Страница:
<< 17 18 19 20
21 22 23 >> [Всего задач: 993]
В треугольнике ABC точки A', B', C' лежат на сторонах BC, CA и AB соответственно. Известно, что ∠AC'B' = ∠B'A'C, ∠CB'A' = ∠A'C'B,
∠BA'C' = ∠C'B'A. Докажите, что точки A', B', C' – середины сторон треугольника ABC.
В треугольнике ABC высоты AA1 и CC1 пересекаются в точке H, лежащей внутри треугольника. Известно, что H – середина AA1, а CH : HC1 = 2 : 1. Найдите величину угла B.
Точки K и L – середины сторон AB и BC
четырёхугольника ABCD. На стороне CD выбрана такая точка M, что CM : DM = 2 : 1. Известно, что DK || BM и
AL || CD. Докажите, что четырёхугольник ABCD – трапеция.
На сторонах единичного квадрата отметили точки K, L, M и N так, что прямая KM параллельна двум сторонам квадрата, а прямая LN – двум другим сторонам квадрата. Отрезок KL отсекает от квадрата треугольник периметра 1. Треугольник какой площади отсекает от квадрата отрезок MN?
Сторона ромба
ABCD равна 6. Расстояние между центрами окружностей,
описанных около треугольников
ABC и
BCD , равно 8. Найдите радиусы
этих окружностей.
Страница:
<< 17 18 19 20
21 22 23 >> [Всего задач: 993]