Страница:
<< 35 36 37 38 39 40
41 >> [Всего задач: 202]
|
|
Сложность: 3+ Классы: 10,11
|
Цифры 0, 1, ..., 9 разбиты на несколько непересекающихся групп. Из цифр каждой группы составляются всевозможные числа, для записи каждого из которых все цифры группы используются ровно один раз (учитываются и записи, начинающиеся с нуля). Все полученные числа расположили в порядке возрастания и k-му числу поставили в соответствие k-ю букву алфавита
АБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯ. Оказалось, что каждой букве соответствует число
и каждому числу соответствует некоторая буква. Шифрование сообщения осуществляется заменой каждой буквы соответствующим ей числом. Если ненулевое число начинается с нуля, то при шифровании этот нуль не выписывается. Восстановите сообщение 873146507381 и укажите таблицу замены букв числами.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Существуют ли 19 таких попарно различных натуральных чисел с одинаковой суммой
цифр, что их сумма равна 1999?
|
|
Сложность: 4 Классы: 9,10,11
|
Даны пять различных положительных чисел, сумма квадратов которых равна сумме всех десяти их попарных произведений.
а) Докажите, что среди пяти данных чисел найдутся три, которые не могут быть длинами сторон одного треугольника.
б) Докажите, что таких троек найдется не менее шести (тройки, отличающиеся только порядком чисел, считаем одинаковыми).
|
|
Сложность: 4+ Классы: 9,10
|
Раскрашенный в чёрный и белый цвета кубик с гранью в одну клетку поставили
на одну из клеток шахматной доски и прокатили по ней так, что кубик побывал на
каждой клетке ровно по одному разу. Можно ли так раскрасить кубик и так прокатить его по доске, чтобы каждый раз цвета клетки и соприкоснувшейся с ней грани совпадали?
|
|
Сложность: 4+ Классы: 7,8,9,10
|
Какое наибольшее число коней можно расставить на доске 5×5 клеток так, чтобы каждый из них бил ровно двух других?
Страница:
<< 35 36 37 38 39 40
41 >> [Всего задач: 202]