Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 298]
а) Существуют ли два равных семиугольника, все вершины которых совпадают, но никакие стороны не совпадают?
б) А три таких семиугольника?
|
|
Сложность: 4 Классы: 7,8,9
|
На плоскости отмечено 6 красных, 6 синих и 6 зеленых точек,
причем никакие три из отмеченных точек не лежат на одной прямой.
Докажите, что сумма площадей треугольников с вершинами одного цвета составляет не
более четверти суммы площадей всех треугольников с отмеченными вершинами.
|
|
Сложность: 4 Классы: 9,10,11
|
На отрезке [0, N] отмечены его концы и еще две точки так, что длины отрезков, на которые разбился отрезок [0, N], целые и взаимно просты в совокупности. Если нашлись такие две отмеченные точки A и B, что расстояние между ними кратно 3, то можно разделить отрезок AB на три равных части, отметить одну из точек деления и стереть одну из точек A, B. Верно ли, что за несколько таких действий можно отметить любую наперед заданную целую точку отрезка [0, N]?
|
|
Сложность: 4 Классы: 8,9,10,11
|
На сторонах угла взяты точки A, B. Через середину M отрезка AB проведены две прямые, одна из которых пересекает стороны угла в точках A1, B1, другая – в точках A2 , B2. Прямые A1B2 и A2B1 пересекают AB в точках P и Q. Докажите, что M – середина PQ.
|
|
Сложность: 4 Классы: 8,9,10
|
На окружности отмечено 2N точек (N – натуральное число).
Известно, что через любую точку внутри окружности проходит не более двух хорд с концами в отмеченных точках. Назовем паросочетанием такой набор из N хорд с концами в отмеченных точках, что каждая отмеченная точка является концом ровно одной из этих хорд. Назовём паросочетание чётным, если количество точек, в которых пересекаются его хорды, чётно, и нечётным иначе. Найдите разность между количеством чётных и нечётных паросочетаний.
Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 298]