ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Автор: Азов Д.Г.

  а) На бесконечном листе клетчатой бумаги двое играют в такую игру: первый окрашивает произвольную клетку в красный цвет; второй окрашивает произвольную неокрашенную клетку в синий цвет; затем первый окрашивает произвольную неокрашенную клетку в красный цвет, а второй еще одну неокрашенную клетку в синий цвет и т. д. Первый стремится к тому, чтобы центры каких-то четырёх красных клеток образовали квадрат со сторонами, параллельными линиям сетки, а второй хочет ему помешать. Может ли выиграть первый игрок?
  б) Каков будет ответ на этот вопрос, если второй игрок закрашивает синим цветом сразу по две клетки?

Вниз   Решение


Около шара радиуса 1 описан конус, высота которого вдвое больше диаметра шара. Найдите отношение полной поверхности конуса к поверхности шара.

ВверхВниз   Решение


В пространстве даны три отрезка A1A2, B1B2 и C1C2, не лежащие в одной плоскости и пересекающиеся в одной точке P. Обозначим через Oijk центр сферы, проходящей через точки Ai, Bj, Ck и P. Докажите, что прямые O111O222, O112O221, O121O212 и O211O122 пересекаются в одной точке.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 56]      



Задача 115390

Темы:   [ Свойства гомотетии и центра гомотетии ]
[ Неравенства с объемами ]
[ Площадь сферы и ее частей ]
[ Объем шара, сегмента и проч. ]
Сложность: 4
Классы: 10,11

На левую чашу весов положили две круглых монеты, а на правую — ещё одну, так что весы оказались в равновесии. А какая из чаш перевесит, если каждую из монет заменить шаром того же радиуса? (Все шары и монеты изготовлены целиком из одного и того же материала, все монеты имеют одинаковую толщину.)
Прислать комментарий     Решение


Задача 64744

Темы:   [ Выпуклые многоугольники ]
[ Геометрические неравенства (прочее) ]
[ Гомотетия помогает решить задачу ]
[ Индукция в геометрии ]
[ Малые шевеления ]
[ Доказательство от противного ]
Сложность: 4+
Классы: 10,11

Два выпуклых многоугольника A1A2...An и B1B2...Bn  (n ≥ 4)  таковы, что каждая сторона первого больше соответствующей стороны второго.
Может ли оказаться, что каждая диагональ второго больше соответствующей диагонали первого?

Прислать комментарий     Решение

Задача 102282

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Неравенства с площадями ]
Сложность: 4+
Классы: 8,9

Дан параллелограмм ABCD, у которого AB = 3, AD = $ \sqrt{3}$ + 1 и $ \angle$BAD = 60o. На стороне AB взята такая точка K, что AK : KB = 2 : 1. Через точку K параллельно AD проведена прямая. На этой прямой внутри параллелограмма выбрана точка L, а на стороне AD выбрана точка M так, что AM = KL. Прямые BM и CL пересекаются в точке N. Найдите угол BKN.
Прислать комментарий     Решение


Задача 102283

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Неравенства с площадями ]
Сложность: 4+
Классы: 8,9

Дан параллелограмм KLMN, у которого KL = 6, KN = $ \sqrt{6}$ + $ \sqrt{3}$ и $ \angle$LKN = 45o. На стороне KL взята такая точка A, что KA : AL = 1 : 2. Через точку A параллельно LM проведена прямая, на которой внутри параллелограмма выбрана точка B, а на стороне KN выбрана точка C так, что KC = AB. Прямые LC и MB пересекаются в точке D. Найдите угол LAD.
Прислать комментарий     Решение


Задача 102284

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Неравенства с площадями ]
Сложность: 4+
Классы: 8,9

Дан параллелограмм ABCD, у которого AB = 5, AD = 2$ \sqrt{3}$ + 2 и $ \angle$BAD = 30o. На стороне AB взята такая точка K, что AK : KB = 4 : 1. Через точку K параллельно AD проведена прямая. На этой прямой внутри параллелограмма выбрана точка L, а на стороне AD выбрана точка M так, что AM = KL. Прямые BM и CL пересекаются в точке N. Найдите угол BKN.
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .