ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

24 студента решали 25 задач. У преподавателя есть таблица размером 24×25, в которой записано, кто какие задачи решил. Оказалось, что каждую задачу решил хотя бы один студент. Докажите, что
  а) можно отметить некоторые задачи "галочкой" так, что каждый из студентов решил чётное число (в частности, может быть, нуль) отмеченных задач;
  б) можно отметить некоторые из задач знаком "+", а некоторые из остальных – знаком "–" и приписать каждой задаче некоторое натуральное число баллов так, чтобы каждый студент набрал поровну баллов за задачи, отмеченные знаками "+" и "–".

   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 143]      



Задача 110278

Темы:   [ Двугранный угол ]
[ Вневписанные окружности ]
Сложность: 3
Классы: 10,11

В основании пирамиды лежит треугольник со сторонами 3, 4 и 5. Боковые грани наклонены к плоскости основания под углом 45o . Чему может быть равна высота пирамиды?
Прислать комментарий     Решение


Задача 52646

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вневписанные окружности ]
Сложность: 3
Классы: 8,9

Сторона правильного треугольника равна a. Найдите радиус вневписанной окружности.

Прислать комментарий     Решение


Задача 54572

Темы:   [ Построение треугольников по различным точкам ]
[ Вневписанные окружности ]
Сложность: 3+
Классы: 8,9

Постройте треугольник ABC, зная положение центров A1, B1 и C1 его вневписанных окружностей.

Прислать комментарий     Решение

Задача 66307

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 9,10

Точка I – центр вписанной окружности треугольника ABC, M – середина стороны AC, а W – середина дуги AB описанной окружности, не содержащей C. Оказалось, что  ∠AIM = 90°.  В каком отношении точка I делит отрезок CW?

Прислать комментарий     Решение

Задача 67335

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
Сложность: 3+
Классы: 8,9,10,11

Даны три попарно различные точки на прямой. Сколько существует равнобедренных треугольников, в которых они являются (в каком-нибудь порядке) центрами описанной, вписанной и вневписанной окружностей?
Прислать комментарий     Решение


Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 143]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .