ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Каждая из шести окружностей касается четырех из оставшихся пяти (рис.). Докажите, что для любой пары несоприкасающихся окружностей (из этих шести) их радиусы и расстояние между центрами связаны соотношением d2 = r12 + r22±6r1r2 (к плюск — если окружности не лежат одна внутри другой, к минуск — в противном случае).


Вниз   Решение


На высотах $AA_0$, $BB_0$, $CC_0$ остроугольного неравностороннего треугольника $ABC$ отметили соответственно точки $A_1, B_1, C_1$ так, что  $AA_1 = BB_1 = CC_1 = R$,  где $R$ – радиус описанной окружности треугольника $ABC$. Докажите, что центр описанной окружности треугольника $A_1B_1C_1$ совпадает с центром вписанной окружности треугольника $ABC$.

ВверхВниз   Решение


Точки A, B и C лежат на одной прямой, причём B находится между A и C.
Найдите геометрическое место таких точек M, что радиусы описанных окружностей треугольников AMB и CMB равны.

ВверхВниз   Решение


В четырёхугольнике ABCD  AB = BC,  ∠A = ∠B = 20°,  ∠C = 30°.  Продолжение стороны AD пересекает BC в точке M, а продолжение стороны CD пересекает AB в точке N. Найдите угол AMN.

Вверх   Решение

Задачи

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 501]      



Задача 111696

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Вспомогательная окружность ]
[ Три точки, лежащие на одной прямой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

Из точки M окружности, описанной около прямоугольника ABCD, опустили перпендикуляры MQ и MP на две его противоположные стороны и перпендикуляры MR и MT на продолжения двух других сторон. Докажите, что прямые PR и QT перпендикулярны, а точка их пересечения принадлежит диагонали прямоугольника ABCD.

Прислать комментарий     Решение

Задача 115775

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Скалярное произведение. Соотношения ]
[ Векторы помогают решить задачу ]
[ Конкуррентность высот. Углы между высотами. ]
[ Теорема Паскаля ]
Сложность: 4-
Классы: 8,9,10,11

Дан прямоугольник ABCD и точка P. Прямые, проходящие через A и B и перпендикулярные, соответственно, PC и PD, пересекаются в точке Q.
Докажите, что  PQAB.

Прислать комментарий     Решение

Задача 116565

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Вписанный угол равен половине центрального ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4-
Классы: 10,11

Автор: Шмаров В.

На окружности, описанной около прямоугольника ABCD, выбрана точка K. Оказалось, что прямая CK пересекает отрезок AD в такой точке M, что
AM : MD = 2.  Пусть O – центр прямоугольника. Докажите, что точка пересечения медиан треугольника OKD лежит на описанной окружности треугольника COD.

Прислать комментарий     Решение

Задача 116897

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Осевая и скользящая симметрии (прочее) ]
[ Признаки равенства прямоугольных треугольников ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 4-
Классы: 8,9

Квадратный лист бумаги согнули по прямой так, что одна из вершин квадрата оказалась на несмежной стороне. При этом образовалось три треугольника. В эти треугольники вписали окружности (см. рис.). Докажите, что радиус одной из этих окружностей равен сумме радиусов двух других.

Прислать комментарий     Решение

Задача 54358

Темы:   [ Ромбы. Признаки и свойства ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9

В ромбе ABCD угол $ \angle$ABC = 60o. Окружность касается прямой AD в точке A, центр окружности лежит внутри ромба. Касательные к окружности, проведённые из точки C, перпендикулярны. Найдите отношение периметра ромба к длине окружности.

Прислать комментарий     Решение


Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .