Страница:
<< 91 92 93 94
95 96 97 >> [Всего задач: 501]
Пусть ABCD – четырёхугольник с параллельными сторонами AD и BC; M и N – середины его сторон AB и CD
соответственно. Прямая MN делит пополам отрезок, соединяющий центры окружностей, описанных около треугольников ABC и ADC. Докажите, что ABCD – параллелограмм.
Найти углы треугольника, если известно, что все вписанные в него квадраты равны (каждый из квадратов вписан так, что две его вершины лежат на одной из сторон треугольника, а остальные вершины на двух других сторонах треугольника).
|
|
Сложность: 3+ Классы: 9,10
|
В ромб ABCD вписана окружность. Прямая, касающаяся этой окружности в точке P, пересекает стороны AB, BC и продолжение стороны AD соответственно в точках N, Q и M, причём MN : NP : PQ = 7 : 1 : 2. Найдите углы ромба.
Каждая из 9 прямых разбивает квадрат на два четырхугольника,
площади которых относятся как 2:3.
Докажите, что по крайней мере три из этих девяти прямых
проходят через одну точку.
Два квадрата
BCDA и
BKMN имеют общую вершину
B.
Докажите, что медиана
BE треугольника
ABK и высота
BF
треугольника
CBN лежат на одной прямой. (Вершины
обоих квадратов перечислены по часовой стрелке.)
Страница:
<< 91 92 93 94
95 96 97 >> [Всего задач: 501]