ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Докажите, что уравнение  x³ + x²y + y³ = 0  не имеет рациональных решений, кроме  (0, 0).

Вниз   Решение


В системе связи, состоящей из 2001 абонентов, каждый абонент связан ровно с n другими. Определите все возможные значения n.

ВверхВниз   Решение


Дана квадратная таблица 4×4, в каждой клетке которой стоит знак "+" или "–" :

За один ход можно поменять знаки на противоположные в любой строке или любом столбце.
Можно ли через несколько ходов получить таблицу из одних плюсов?

ВверхВниз   Решение


Каждые два из n блоков ЭВМ соединены проводом. Можно ли каждый из этих проводов покрасить в один из  n – 1  цветов так, чтобы от каждого блока отходил  n – 1  провод разного цвета, если  а)  n = 6;  б)  n = 13?

Вверх   Решение

Задачи

Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 629]      



Задача 30751

Темы:   [ Инварианты ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 7,8,9

Круг разделён на шесть секторов, в каждом из которых стоит фишка. Разрешается за один ход сдвинуть любые две фишки в соседние с ними сектора.
Можно ли с помощью таких операций собрать все фишки в одном секторе?

Прислать комментарий     Решение

Задача 30757

Темы:   [ Инварианты ]
[ Четность и нечетность ]
[ Таблицы и турниры (прочее) ]
Сложность: 3+
Классы: 7,8,9

В таблице 8×8 все четыре угловые клетки закрашены чёрным цветом, все остальные – белым. Докажите, что с помощью перекрашивания строк и столбцов нельзя добиться того, чтобы все клетки стали белыми. Под перекрашиванием строки или столбца понимается изменение цвета всех клеток в строке или столбце.

Прислать комментарий     Решение

Задача 31291

Темы:   [ Уравнения в целых числах ]
[ Четность и нечетность ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 6,7,8

Решить в целых числах уравнение  x² + y² + z² = 4(xy + yz + zx).

Прислать комментарий     Решение

Задача 32039

Темы:   [ Обходы многогранников ]
[ Четность и нечетность ]
[ Куб ]
Сложность: 3+
Классы: 8,9,10

У куба отмечены вершины и центры граней, а также проведены диагонали всех граней.
Можно ли по отрезкам этих диагоналей обойти все отмеченные точки, побывав в каждой из них ровно один раз?

Прислать комментарий     Решение

Задача 32072

Темы:   [ Шахматная раскраска ]
[ Четность и нечетность ]
[ Шахматные доски и шахматные фигуры ]
[ Теория алгоритмов (прочее) ]
Сложность: 3+
Классы: 8,9

"Крокодилом" называется фигура, ход которой заключается в прыжке на клетку, в которую можно попасть сдвигом на одну клетку по вертикали или горизонтали, а затем на N клеток в перпендикулярном направлении (при  N = 2  "крокодил" – это шахматный конь).
При каких N "крокодил" может пройти с каждой клетки бесконечной шахматной доски на любую другую?

Прислать комментарий     Решение

Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 629]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .