ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 629]      



Задача 64302

Темы:   [ Площадь параллелограмма ]
[ Четность и нечетность ]
[ Перебор случаев ]
Сложность: 3+
Классы: 6,7

На рисунке можно найти 9 прямоугольников. Известно, что у каждого из них длина и ширина – целые.
Сколько прямоугольников из этих девяти могут иметь нечётную площадь?

Прислать комментарий     Решение

Задача 64331

Темы:   [ Подсчет двумя способами ]
[ Четность и нечетность ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 3+
Классы: 7,8

На белых и чёрных клетках доски 10×10 стоит по одинаковому количеству ладей так, что никакие две ладьи друг друга не бьют.
Докажите, что на эту доску можно поставить еще одну ладью так, чтобы она не била никакую из уже стоящих.

Прислать комментарий     Решение

Задача 64515

Темы:   [ Системы точек и отрезков (прочее) ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9,10

На плоскости даны несколько точек, никакие три из которых не лежат на одной прямой. Некоторые точки соединены отрезками. Известно, что любая прямая, не проходящая через данные точки, пересекает чётное число отрезков. Докажите, что из каждой точки выходит чётное число отрезков.

Прислать комментарий     Решение

Задача 64761

Темы:   [ Арифметика остатков (прочее) ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9,10

По кругу расставлены 99 натуральных чисел. Известно, что каждые два соседних числа отличаются или на 1, или на 2, или в два раза.
Докажите, что хотя бы одно из этих чисел делится на 3.

Прислать комментарий     Решение

Задача 65000

Темы:   [ Раскраски ]
[ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
[ Степень вершины ]
Сложность: 3+

Каждые два из n блоков ЭВМ соединены проводом. Можно ли каждый из этих проводов покрасить в один из  n – 1  цветов так, чтобы от каждого блока отходил  n – 1  провод разного цвета, если  а)  n = 6;  б)  n = 13?

Прислать комментарий     Решение

Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 629]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .