ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) Пусть P — точка пересечения прямых AB и A1B1. Докажите, что если среди точек A, B, A1, B1 и P нет совпадающих, то общая точка описанных окружностей треугольников PAA1 и PBB1 является центром поворотной гомотетии, переводящей точку A в A1, а точку B в B1, причем такая поворотная гомотетия единственна. б) Докажите, что центром поворотной гомотетии, переводящей отрезок AB в отрезок BC, является точка пересечения окружности, проходящей через точку A и касающейся прямой BC в точке B, и окружности, проходящей через точку C и касающейся прямой AB в точке B. ![]() |
Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 629]
В системе связи, состоящей из 2001 абонентов, каждый абонент связан ровно с n другими. Определите все возможные значения n.
Дана квадратная таблица 4×4, в каждой клетке которой стоит знак "+" или "–" : Можно ли через несколько ходов получить таблицу из одних плюсов?
На плоскости лежат три шайбы A, B и C. Хоккеист бьёт по одной из шайб так, чтобы она прошла между двумя другими и остановилась в некоторой точке. Могут ли все шайбы вернуться на свои места после25 ударов?
Найдите все числа вида 13xy45z, которые делятяс на 792.
Докажите, что уравнение x³ + x²y + y³ = 0 не имеет рациональных решений, кроме (0, 0).
Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 629] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |