ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В четырёхугольнике KLMN, вписанном в окружность, биссектрисы углов K и N пересекаются в точке P, лежащей на стороне LM. Известно, что отношение длины отрезка KL к длине отрезка MN равно b. Найдите: а) отношение расстояний от точки P до прямых KL и MN; б) отношение длины хорды LM к длине хорды MN.
![]() ![]()
На дуге окружности, стягиваемой хордой KN, взяты точки L и
M. Биссектрисы углов KLM и LMN пересекаются в точке P, лежащей
на хорде KN. Известно, что отношение длины хорды KL к длине
хорды KN равно
а) отношение расстояний от точки P до прямых KL и MN; б) отношение площадей треугольников KLP и MPN.
![]() ![]() |
Страница: << 67 68 69 70 71 72 73 >> [Всего задач: 501]
Пусть AL – биссектриса треугольника ABC. Через вершины B и C проведены параллельные прямые b и c, равноудалённые от вершины A. На прямых b и c выбраны соответственно такие точки M и N, что отрезки LM и LN пересекаются со сторонами соответственно AB и AC и делятся ими пополам.
Отрезки, соединяющие внутреннюю точку выпуклого неравностороннего n-угольника с его вершинами, делят n-угольник на n равных треугольников.
В круге проведены два диаметра AB и CD, M — некоторая точка. Известно, что AM = 15, BM = 20, CM = 24. Найдите DM.
Дана линейка с параллельными краями и без делений. Постройте центр окружности, некоторая дуга которой дана на чертеже.
Квадрат ABCD и окружность а) сумма длин дуг EF и IJ равна сумме длин дуг GH и KL; б) сумма периметров криволинейных треугольников AEF и CIJ равна сумме периметров криволинейных треугольников BGH и DKL.
Страница: << 67 68 69 70 71 72 73 >> [Всего задач: 501] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |