ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В четырёхугольнике ABCD, вписанном в окружность, диагонали AC и BD перпендикулярны и пересекаются в точке Q. Отрезок, соединяющий вершину C с серединой отрезка AD, равен 3. Расстояние от точки Q до отрезка BC равно 1, сторона AD равна 2. Найдите AQ.
![]() ![]() Две окружности пересекаются в точках A и B. Через точку B проводится прямая, пересекающая вторично окружности в точках C и D, а затем через точки C и D проводятся касательные к этим окружностям. Докажите, что точки A, C, D и точка P пересечения касательных лежат на одной окружности.
![]() ![]() |
Страница: << 67 68 69 70 71 72 73 >> [Всего задач: 501]
Пусть AL – биссектриса треугольника ABC. Через вершины B и C проведены параллельные прямые b и c, равноудалённые от вершины A. На прямых b и c выбраны соответственно такие точки M и N, что отрезки LM и LN пересекаются со сторонами соответственно AB и AC и делятся ими пополам.
Отрезки, соединяющие внутреннюю точку выпуклого неравностороннего n-угольника с его вершинами, делят n-угольник на n равных треугольников.
В круге проведены два диаметра AB и CD, M — некоторая точка. Известно, что AM = 15, BM = 20, CM = 24. Найдите DM.
Дана линейка с параллельными краями и без делений. Постройте центр окружности, некоторая дуга которой дана на чертеже.
Квадрат ABCD и окружность а) сумма длин дуг EF и IJ равна сумме длин дуг GH и KL; б) сумма периметров криволинейных треугольников AEF и CIJ равна сумме периметров криволинейных треугольников BGH и DKL.
Страница: << 67 68 69 70 71 72 73 >> [Всего задач: 501] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |