Страница: 1
2 >> [Всего задач: 6]
|
|
Сложность: 5- Классы: 10,11
|
Докажите, что если α < 0 < β, то
Sα(x) ≤ S0(x) ≤ Sβ(x), причём
Определение средних степенных Sα(x) можно посмотреть в справочнике.
|
|
Сложность: 3 Классы: 8,9,10
|
На доске написаны девять приведённых квадратных трёхчленов: x² + a1x + b1, x² + a2x + b2, ..., x² + a9x + b9.
Известно, что последовательности a1, a2, ..., a9 и b1, b2, ..., b9 – арифметические прогрессии. Оказалось, что сумма всех девяти трёхчленов имеет хотя бы один корень. Какое наибольшее количество исходных трёхчленов может не иметь корней?
|
|
Сложность: 4- Классы: 9,10,11
|
Дан многочлен P(x) степени 2003 с действительными
коэффициентами, причем старший коэффициент равен 1. Имеется бесконечная
последовательность целых чисел a1, a2, ..., такая, что P(a1) = 0,
P(a2) = a1, P(a3) = a2 и т. д. Докажите, что не все
числа в последовательности a1, a2, ... различны.
|
|
Сложность: 4 Классы: 10,11
|
Дан многочлен P(x) с действительными коэффициентами. Бесконечная
последовательность различных натуральных чисел a1, a2, a3, ... такова, что
P(a1) = 0, P(a2) = a1, P(a3) = a2, и т.д. Какую степень может иметь P(x)?
|
|
Сложность: 4 Классы: 9,10,11
|
Пусть P(x) – многочлен со старшим коэффициентом 1, а
последовательность целых чисел a1, a2, ... такова, что P(a1)= 0,
P(a2) = a1, P(a3) = a2 и т. д. Числа в последовательности не повторяются. Какую степень может иметь P(x)?
Страница: 1
2 >> [Всего задач: 6]