ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Одного из близнецов зовут Ваня, другого – Витя. Один из братьев всегда говорит правду, а другой всегда лжет. Можно задать один вопрос одному из братьев, на который тот ответит "да" или "нет". Выясните, кого из близнецов как зовут.

Вниз   Решение


Обозначим через  L(m)  длину периода дроби 1/m. Докажите, что если  (m, 10) = 1,  то  L(m)  является делителем числа φ(m).

ВверхВниз   Решение


По кругу стоят 2009 целых неотрицательных чисел, не превышающих  100 . Разрешается прибавить по 1 к двум соседним числам, причем с любыми двумя соседними числами эту операцию можно проделать не более k  раз. При каком наименьшем k все числа гарантированно можно сделать равными?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 16]      



Задача 52922

Темы:   [ Формула Эйлера ]
[ Вписанные и описанные окружности ]
[ Теорема синусов ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 5
Классы: 8,9

В треугольнике PQR точка A — центр вписанной окружности, а точка B — центр окружности, описанной около треугольника PQR. Прямая AB перпендикулярна биссектрисе QA треугольника PQR. Известно, что угол ABQ равен $ \beta$. Найдите углы треугольника PQR.

Прислать комментарий     Решение


Задача 66210

Темы:   [ Вписанные и описанные окружности ]
[ Неравенства для элементов треугольника (прочее) ]
[ Формула Эйлера ]
Сложность: 4-
Классы: 8,9,10

В треугольнике центр описанной окружности лежит на вписанной окружности.
Докажите, что отношение наибольшей стороны треугольника к наименьшей меньше 2.

Прислать комментарий     Решение

Задача 111078

Темы:   [ Вписанные и описанные окружности ]
[ Отношение, в котором биссектриса делит сторону ]
[ Формула Эйлера ]
Сложность: 4
Классы: 8,9

В треугольнике ABC проведены биссектрисы AE и CD . Найдите длины отрезков CD , CE , DE и расстояние между центрами окружностей, вписанной в треугольник ABC и описанной около треугольника ABC , если AC=2 , BC=4 , ACB = arccos .
Прислать комментарий     Решение


Задача 111079

Темы:   [ Вписанные и описанные окружности ]
[ Отношение, в котором биссектриса делит сторону ]
[ Формула Эйлера ]
Сложность: 4
Классы: 8,9

В треугольнике ABC проведены биссектрисы AE и CD . Найдите длины отрезков AD , CE , радиус окружности, описанной около треугольника BCD и расстояние между центрами окружностей, вписанной в треугольник ABC и описанной около треугольника ABC , если AC=2 , BC=4 , ACB = 2 arccos .
Прислать комментарий     Решение


Задача 111080

Темы:   [ Вписанные и описанные окружности ]
[ Отношение, в котором биссектриса делит сторону ]
[ Формула Эйлера ]
Сложность: 4
Классы: 8,9

В треугольнике ABC проведены биссектрисы AE и CD . Найдите длины отрезков AB , CE , DE и расстояние между центрами окружностей, вписанной в треугольник ABC и описанной около треугольника ABC , если AC=2 , BC=4 , CD = .
Прислать комментарий     Решение


Страница: << 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .