ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Группа людей прошла опрос, состоящий из 20 вопросов, на каждый из которых возможно два ответа. После опроса оказалось, что для любых 10 вопросов и любой комбинации ответов на эти вопросы существует человек, давший именно эти ответы на эти вопросы. Обязательно ли найдутся два человека, у которых ответы ни на один вопрос не совпали?
б) Решите ту же задачу, если на каждый вопрос есть 12 вариантов ответа.

   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 143]      



Задача 110278

Темы:   [ Двугранный угол ]
[ Вневписанные окружности ]
Сложность: 3
Классы: 10,11

В основании пирамиды лежит треугольник со сторонами 3, 4 и 5. Боковые грани наклонены к плоскости основания под углом 45o . Чему может быть равна высота пирамиды?
Прислать комментарий     Решение


Задача 52646

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вневписанные окружности ]
Сложность: 3
Классы: 8,9

Сторона правильного треугольника равна a. Найдите радиус вневписанной окружности.

Прислать комментарий     Решение


Задача 54572

Темы:   [ Построение треугольников по различным точкам ]
[ Вневписанные окружности ]
Сложность: 3+
Классы: 8,9

Постройте треугольник ABC, зная положение центров A1, B1 и C1 его вневписанных окружностей.

Прислать комментарий     Решение

Задача 66307

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 9,10

Точка I – центр вписанной окружности треугольника ABC, M – середина стороны AC, а W – середина дуги AB описанной окружности, не содержащей C. Оказалось, что  ∠AIM = 90°.  В каком отношении точка I делит отрезок CW?

Прислать комментарий     Решение

Задача 67335

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
Сложность: 3+
Классы: 8,9,10,11

Даны три попарно различные точки на прямой. Сколько существует равнобедренных треугольников, в которых они являются (в каком-нибудь порядке) центрами описанной, вписанной и вневписанной окружностей?
Прислать комментарий     Решение


Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 143]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .