Страница:
<< 82 83 84 85
86 87 88 >> [Всего задач: 507]
|
|
Сложность: 5 Классы: 10,11
|
У N друзей есть круглая пицца. Разрешается провести не более 100 прямолинейных разрезов, не перекладывая части до окончания разрезаний, после чего распределить все получившиеся кусочки между всеми друзьями так, чтобы каждый получил суммарно одну и ту же долю пиццы по площади. Найдутся ли такие разрезания, если
а) N = 201; б) N = 400?
|
|
Сложность: 5 Классы: 9,10,11
|
Внутри правильного шестиугольника находится другой правильный шестиугольник с
вдвое меньшей стороной.
Доказать, что центр большого шестиугольника лежит внутри малого шестиугольника.
|
|
Сложность: 5 Классы: 8,9,10,11
|
На координатной плоскости дан выпуклый пятиугольник
ABCDE с вершинами в целых точках. Докажите, что внутри или на границе
пятиугольника
A1B1C1D1E1 (см. рис.) есть хотя бы одна целая точка.
|
|
Сложность: 5+ Классы: 9,10,11
|
Можно ли какой-нибудь выпуклый многоугольник разрезать на конечное число
невыпуклых четырёхугольников?
|
|
Сложность: 6- Классы: 9,10,11
|
Выпуклый многоугольник обладает следующим свойством: если все прямые, на
которых лежат его стороны, параллельно перенести на расстояние 1 во внешнюю
сторону, то полученные прямые образуют многоугольник, подобный исходному,
причём параллельные стороны окажутся пропорциональными. Доказать, что в данный
многоугольник можно вписать окружность.
Страница:
<< 82 83 84 85
86 87 88 >> [Всего задач: 507]