Страница:
<< 104 105 106 107
108 109 110 >> [Всего задач: 1024]
|
|
Сложность: 3+ Классы: 8,9,10
|
Центр окружности ω2 лежит на окружности ω1. Из точки X окружности ω1 проведены касательные XP и XQ к окружности ω2 (P и Q – точки касания), которые повторно пересекают ω1 в точках R и S. Докажите, что прямая PQ проходит через середину отрезка RS.
Дан квадрат ABCD. Первая окружность касается сторон угла A, вторая – сторон угла B, причём сумма диаметров окружностей равна стороне квадрата. Докажите, что одна из общих касательных этих окружностей пересекает сторону AB в её середине.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Даны две монеты радиуса 1 см, две монеты радиуса 2 см и две монеты радиуса 3 см. Можно положить две из них на стол так, чтобы они касались друг друга, и добавлять монеты по одной так, чтобы очередная касалась хотя бы двух уже лежащих. Новую монету нельзя класть на старую. Можно ли положить несколько монет так, чтобы центры каких-то трёх монет оказались на одной прямой?
|
|
Сложность: 3+ Классы: 10,11
|
Вневписанные окружности касаются сторон AC и BC треугольника ABC в точках K и L. Докажите, что прямая, соединяющая середины KL и AB,
а) делит периметр треугольника ABC пополам;
б) параллельна биссектрисе угла ACB.
Длины сторон треугольника
ABC равны 4, 6 и 8. Вписанная в этот треугольник окружность касается его
сторон в точках
D,
E и
F. Найдите площадь треугольника
DEF.
Страница:
<< 104 105 106 107
108 109 110 >> [Всего задач: 1024]