ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Какое наибольшее число коней можно расставить на доске 5×5 клеток так, чтобы каждый из них бил ровно двух других?

   Решение

Задачи

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 202]      



Задача 35761

Темы:   [ Ребусы ]
[ Уравнения в целых числах ]
[ Криптография ]
[ Перестановки и подстановки (прочее) ]
[ Перебор случаев ]
Сложность: 3+
Классы: 10,11

Цифры 0, 1, ..., 9 разбиты на несколько непересекающихся групп. Из цифр каждой группы составляются всевозможные числа, для записи каждого из которых все цифры группы используются ровно один раз (учитываются и записи, начинающиеся с нуля). Все полученные числа расположили в порядке возрастания и k-му числу поставили в соответствие k-ю букву алфавита АБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯ. Оказалось, что каждой букве соответствует число и каждому числу соответствует некоторая буква. Шифрование сообщения осуществляется заменой каждой буквы соответствующим ей числом. Если ненулевое число начинается с нуля, то при шифровании этот нуль не выписывается. Восстановите сообщение 873146507381 и укажите таблицу замены букв числами.

Прислать комментарий     Решение

Задача 109684

Темы:   [ Деление с остатком ]
[ Арифметика остатков (прочее) ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Доказательство от противного ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9,10,11

Существуют ли 19 таких попарно различных натуральных чисел с одинаковой суммой цифр, что их сумма равна 1999?

Прислать комментарий     Решение

Задача 115986

Темы:   [ Алгебраические задачи на неравенство треугольника ]
[ Линейные неравенства и системы неравенств ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Доказательство от противного ]
[ Перебор случаев ]
Сложность: 4
Классы: 9,10,11

Даны пять различных положительных чисел, сумма квадратов которых равна сумме всех десяти их попарных произведений.

  а) Докажите, что среди пяти данных чисел найдутся три, которые не могут быть длинами сторон одного треугольника.
  б) Докажите, что таких троек найдется не менее шести (тройки, отличающиеся только порядком чисел, считаем одинаковыми).

Прислать комментарий     Решение

Задача 98365

Темы:   [ Деревья ]
[ Раскраски ]
[ Куб ]
[ Доказательство от противного ]
[ Перебор случаев ]
Сложность: 4+
Классы: 9,10

Раскрашенный в чёрный и белый цвета кубик с гранью в одну клетку поставили на одну из клеток шахматной доски и прокатили по ней так, что кубик побывал на каждой клетке ровно по одному разу. Можно ли так раскрасить кубик и так прокатить его по доске, чтобы каждый раз цвета клетки и соприкоснувшейся с ней грани совпадали?
Прислать комментарий     Решение


Задача 105077

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Шахматная раскраска ]
[ Степень вершины ]
[ Примеры и контрпримеры. Конструкции ]
[ Перебор случаев ]
Сложность: 4+
Классы: 7,8,9,10

Какое наибольшее число коней можно расставить на доске 5×5 клеток так, чтобы каждый из них бил ровно двух других?

Прислать комментарий     Решение

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 202]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .