ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть P(x) – многочлен со старшим коэффициентом 1, а последовательность целых чисел  a1, a2, ...  такова, что  P(a1)= 0,  P(a2) = a1P(a3) = a2  и т. д. Числа в последовательности не повторяются. Какую степень может иметь P(x)?

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 61414

Темы:   [ Алгебраические неравенства (прочее) ]
[ Предел функции ]
[ Неравенство Иенсена ]
Сложность: 5-
Классы: 10,11

Докажите, что если  α < 0 < β,  то   Sα(x) ≤ S0(x) ≤ Sβ(x),  причём  
Определение средних степенных Sα(x) можно посмотреть в справочнике.

Прислать комментарий     Решение

Задача 116639

Темы:   [ Исследование квадратного трехчлена ]
[ Арифметическая прогрессия ]
[ Предел функции ]
Сложность: 3
Классы: 8,9,10

На доске написаны девять приведённых квадратных трёхчленов:  x² + a1x + b1x² + a2x + b2,  ...,  x² + a9x + b9. Известно, что последовательности  a1, a2, ..., a9  и  b1, b2, ..., b9  – арифметические прогрессии. Оказалось, что сумма всех девяти трёхчленов имеет хотя бы один корень. Какое наибольшее количество исходных трёхчленов может не иметь корней?

Прислать комментарий     Решение

Задача 105163

Темы:   [ Итерации ]
[ Многочлены (прочее) ]
[ Предел функции ]
[ Монотонность и ограниченность ]
Сложность: 4-
Классы: 9,10,11

Дан многочлен P(x) степени 2003 с действительными коэффициентами, причем старший коэффициент равен 1. Имеется бесконечная последовательность целых чисел  a1, a2, ...,  такая, что  P(a1) = 0,  P(a2) = a1P(a3) = a2  и т. д. Докажите, что не все числа в последовательности  a1, a2, ...  различны.

Прислать комментарий     Решение

Задача 98621

Темы:   [ Итерации ]
[ Многочлены (прочее) ]
[ Предел функции ]
[ Монотонность и ограниченность ]
Сложность: 4
Классы: 10,11

Дан многочлен P(x) с действительными коэффициентами. Бесконечная последовательность различных натуральных чисел a1, a2, a3, ... такова, что
P(a1) = 0,  P(a2) = a1P(a3) = a2,  и т.д. Какую степень может иметь P(x)?

Прислать комментарий     Решение

Задача 105158

Темы:   [ Итерации ]
[ Многочлены (прочее) ]
[ Предел функции ]
[ Монотонность и ограниченность ]
Сложность: 4
Классы: 9,10,11

Пусть P(x) – многочлен со старшим коэффициентом 1, а последовательность целых чисел  a1, a2, ...  такова, что  P(a1)= 0,  P(a2) = a1P(a3) = a2  и т. д. Числа в последовательности не повторяются. Какую степень может иметь P(x)?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .