ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Доказать, что если в треугольной пирамиде две высоты пересекаются, то две другие высоты также пересекаются.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 37]      



Задача 109143

Темы:   [ Высота пирамиды (тетраэдра) ]
[ Признаки перпендикулярности ]
[ Перпендикулярные плоскости ]
Сложность: 4+
Классы: 10,11

Доказать, что если в треугольной пирамиде две высоты пересекаются, то две другие высоты также пересекаются.
Прислать комментарий     Решение


Задача 87040

Темы:   [ Медиана пирамиды (тетраэдра) ]
[ Медиана пирамиды (тетраэдра) ]
Сложность: 3
Классы: 8,9

Дан тетраэдр ABCD . Все плоские углы при вершине D – прямые; DA = 1 , DB = 2 , DC = 3 . Найдите медиану тетраэдра, проведённую из вершины D .
Прислать комментарий     Решение


Задача 87043

Темы:   [ Медиана пирамиды (тетраэдра) ]
[ Медиана пирамиды (тетраэдра) ]
Сложность: 3
Классы: 8,9

В тетраэдре ABCD известно, что AB = 3 , BC = 4 , AC = 5 , AD = DB = 2 , DC = 4 . Найдите медиану тетраэдра, проведённую из вершины D .
Прислать комментарий     Решение


Задача 87044

Темы:   [ Медиана пирамиды (тетраэдра) ]
[ Медиана пирамиды (тетраэдра) ]
Сложность: 3
Классы: 8,9

Докажите, что для любых четырёх точек пространства верно равенство

· + · + · = 0.

Прислать комментарий     Решение

Задача 87285

Темы:   [ Боковая поверхность тетраэдра и пирамиды ]
[ Апофема пирамиды (тетраэдра) ]
Сложность: 3
Классы: 8,9

Основание пирамиды – параллелограмм со сторонами 10 и 18, и площадью 90. Высота пирамиды проходит через точку пересечения диагоналей основания и равна 6. Найдите боковую поверхность пирамиды.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 37]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .