ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Можно ли покрасить 15 отрезков, изображённых на рисунке, в три цвета так, чтобы никакие два отрезка одного цвета не имели общего конца?

   Решение

Задачи

Страница: << 88 89 90 91 92 93 94 >> [Всего задач: 508]      



Задача 109490

Темы:   [ Раскраски ]
[ Четность и нечетность ]
[ Теория графов (прочее) ]
[ Пятиугольники ]
Сложность: 4-
Классы: 7,8,9,10

Можно ли покрасить 15 отрезков, изображённых на рисунке, в три цвета так, чтобы никакие два отрезка одного цвета не имели общего конца?

Прислать комментарий     Решение

Задача 109874

Темы:   [ Раскраски ]
[ Разбиения на пары и группы; биекции ]
[ Подсчет двумя способами ]
[ Правильные многоугольники ]
Сложность: 4-
Классы: 9,10,11

Все стороны и диагонали правильного 12-угольника раскрашиваются в 12 цветов (каждый отрезок – одним цветом).
Существует ли такая раскраска, что для любых трёх цветов найдутся три вершины, попарно соединенные между собой отрезками этих цветов?

Прислать комментарий     Решение

Задача 111679

Темы:   [ Вспомогательные подобные треугольники ]
[ Пятиугольники ]
[ Признаки и свойства параллелограмма ]
[ Правильные многоугольники ]
Сложность: 4-
Классы: 8,9

Пусть a – длина стороны правильного пятиугольника, d – длина его диагонали. Докажите, что  d² = a² + ad.

Прислать комментарий     Решение

Задача 116887

Темы:   [ Куб ]
[ Сечения, развертки и остовы (прочее) ]
[ Шестиугольники ]
[ Правильные многоугольники ]
[ Признаки равенства прямоугольных треугольников ]
Сложность: 4-
Классы: 10,11

Автор: Фольклор

В кубе с ребром длины 1 провели два сечения в виде правильных шестиугольников.
Найдите длину отрезка, по которому эти сечения пересекаются.

Прислать комментарий     Решение

Задача 35216

Темы:   [ Вспомогательные подобные треугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Шестиугольники ]
[ Вписанные и описанные многоугольники ]
[ Теоремы Чевы и Менелая ]
Сложность: 4
Классы: 8,9,10

В окружность вписан выпуклый шестиугольник ABCDEF.
  а) Известно, что диагонали AD, BE, CF пересекаются в одной точке. Докажите, что  AB·CD·EF = BC·DE·FA.
  б) Известно, что  AB·CD·EF = BC·DE·FA.  Докажите, что диагонали AD, BE, CF пересекаются в одной точке.

Прислать комментарий     Решение

Страница: << 88 89 90 91 92 93 94 >> [Всего задач: 508]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .