ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Десять попарно различных ненулевых чисел таковы, что для каждых двух из них либо сумма этих чисел, либо их произведение – рациональное число.
Докажите, что квадраты всех чисел рациональны.

   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 147]      



Задача 109780

Темы:   [ Рациональные и иррациональные числа ]
[ Тождественные преобразования ]
[ Теория множеств (прочее) ]
Сложность: 4
Классы: 9,10,11

Числовое множество M , содержащее 2003 различных положительных числа, таково, что для любых трех различных элементов a,b,c из M число a2+bc рационально. Докажите, что можно выбрать такое натуральное n , что для любого a из M число a рационально.
Прислать комментарий     Решение


Задача 109493

Темы:   [ Рациональные и иррациональные числа ]
[ Процессы и операции ]
[ Итерации ]
[ Индукция (прочее) ]
[ Теория алгоритмов (прочее) ]
Сложность: 4+
Классы: 9,10,11

С ненулевым числом разрешается проделывать следующие операции: x , x . Верно ли, что из каждого ненулевого рационального числа можно получить каждое рациональное число с помощью конечного числа таких операций?
Прислать комментарий     Решение


Задача 109704

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Неравенство Коши ]
[ Подсчет двумя способами ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4+
Классы: 8,9,10

Автор: Храбров А.

Докажите, что при любом натуральном n справедливо неравенство  

Прислать комментарий     Решение

Задача 107992

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Центральный угол. Длина дуги и длина окружности ]
[ Принцип Дирихле (углы и длины) ]
[ Последовательности (прочее) ]
[ Поворот помогает решить задачу ]
[ Симметрия и инволютивные преобразования ]
Сложность: 5-
Классы: 9,10,11

Для каждой пары действительных чисел a и b рассмотрим последовательность чисел pn = [2{an + b}]. Любые k подряд идущих членов этой последовательности назовем словом. Верно ли, что любой упорядоченный набор из нулей и единиц длины k будет словом последовательности, заданной некоторыми a и b при k = 4; при k = 5?

Примечание: [c] - целая часть, {c} - дробная часть числа c.
Прислать комментарий     Решение


Задача 109834

Темы:   [ Рациональные и иррациональные числа ]
[ Теория графов (прочее) ]
[ Вспомогательная раскраска (прочее) ]
Сложность: 5-
Классы: 9,10,11

Десять попарно различных ненулевых чисел таковы, что для каждых двух из них либо сумма этих чисел, либо их произведение – рациональное число.
Докажите, что квадраты всех чисел рациональны.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 147]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .