ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Сумма и произведение двух чисто периодических десятичных дробей – чисто периодические дроби с периодом T.
Докажите, что исходные дроби имеют периоды не больше T.

   Решение

Задачи

Страница: << 129 130 131 132 133 134 135 >> [Всего задач: 694]      



Задача 60726

 [Гармонические числа]
Темы:   [ Четность и нечетность ]
[ Обыкновенные дроби ]
[ Принцип крайнего (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 4-
Классы: 8,9,10

Докажите, что числа  Hn = 1 + 1/2 + 1/3 + ... + 1/n  при  n > 1  не будут целыми.

Прислать комментарий     Решение

Задача 79246

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Итерации ]
[ Индукция (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 4-
Классы: 9,10,11

С натуральным числом K производится следующая операция: оно представляется в виде произведения простых сомножителей  K = p1p2...pn;  затем вычисляется сумма  p1 + p2 + ... + pn + 1.  С полученным числом производится то же самое, и т.д.
Доказать, что образующаяся последовательность, начиная с некоторого номера, будет периодической.

Прислать комментарий     Решение

Задача 109839

Темы:   [ Периодические и непериодические дроби ]
[ Квадратные уравнения. Теорема Виета ]
[ Целочисленные и целозначные многочлены ]
[ Периодичность и непериодичность ]
Сложность: 4-
Классы: 8,9,10,11

Сумма и произведение двух чисто периодических десятичных дробей – чисто периодические дроби с периодом T.
Докажите, что исходные дроби имеют периоды не больше T.

Прислать комментарий     Решение

Задача 109935

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Подсчет двумя способами ]
[ Инварианты ]
[ Арифметическая прогрессия ]
Сложность: 4-
Классы: 8,9,10,11

На столе лежали две колоды, по 36 карт в каждой. Первую колоду перетасовали и положили на вторую. Затем для каждой карты первой колоды подсчитали количество карт между ней и такой же картой второй колоды (то есть сколько карт между семёрками червей, между дамами пик, и т.д.). Чему равна сумма 36 полученных чисел?

Прислать комментарий     Решение

Задача 60847

Темы:   [ Теория алгоритмов (прочее) ]
[ Периодические и непериодические дроби ]
[ Рациональные и иррациональные числа ]
[ Периодичность и непериодичность ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Коля Васин задумал написать программу, которая дала бы возможность компьютеру печатать одну за другой цифры десятичной записи числа . Докажите, что даже если бы машина не ломалась, то Колина затея все равно бы не удалась, и рано или поздно компьютер напечатал бы неверную цифру.

Прислать комментарий     Решение

Страница: << 129 130 131 132 133 134 135 >> [Всего задач: 694]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .