ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Биссектрисы углов A и C треугольника ABC пересекают его стороны в точках A1 и C1, а описанную окружность этого треугольника – в точках A0 и C0 соответственно. Прямые A1C1 и A0C0 пересекаются в точке P. Докажите, что отрезок, соединяющий P с центром вписанной окружности треугольника ABC, параллелен AC.

   Решение

Задачи

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 239]      



Задача 108077

Темы:   [ Углы между биссектрисами ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Частные случаи треугольников (прочее) ]
Сложность: 4
Классы: 8,9

Точка P лежит внутри равнобедренного треугольника ABC  (AB = BC ),  причём  ∠ABC = 80°,  ∠PAC = 40°,  ∠ACP = 30°.  Найдите угол BPC.

Прислать комментарий     Решение

Задача 109815

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Против большей стороны лежит больший угол ]
[ Вписанные и описанные окружности ]
Сложность: 4
Классы: 8,9

Пусть O – центр описанной окружности остроугольного треугольника ABC, T – центр описанной окружности треугольника AOC, M – середина AC. На сторонах AB и BC выбраны точки D и E соответственно так, что  ∠BDM = ∠BEM = ∠B.  Докажите, что  BTDE.

Прислать комментарий     Решение

Задача 111677

Темы:   [ Признаки и свойства параллелограмма ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Пятиугольники ]
Сложность: 4
Классы: 8,9

В равностороннем (неправильном) пятиугольнике ABCDE угол ABC вдвое больше угла DBE. Найдите величину угла ABC.

Прислать комментарий     Решение

Задача 110203

Темы:   [ Биссектриса делит дугу пополам ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Вписанные и описанные окружности ]
[ Вспомогательные подобные треугольники ]
[ Гомотетия помогает решить задачу ]
Сложность: 4+
Классы: 8,9

Биссектрисы углов A и C треугольника ABC пересекают его стороны в точках A1 и C1, а описанную окружность этого треугольника – в точках A0 и C0 соответственно. Прямые A1C1 и A0C0 пересекаются в точке P. Докажите, что отрезок, соединяющий P с центром вписанной окружности треугольника ABC, параллелен AC.

Прислать комментарий     Решение

Задача 52609

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Окружности (прочее) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 2+
Классы: 8,9

Угловая величина дуги AB равна  α < 90°.  На продолжении радиуса OA отложен отрезок AC, равный хорде AB, и точка C соединена с B. Найдите угол ACB.

Прислать комментарий     Решение

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 239]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .