ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Из точки, лежащей внутри выпуклого n-угольника, проведены лучи, перпендикулярные его сторонам и пересекающие стороны (или их продолжения). На этих лучах отложены векторы a1,...,an, длины которых равны длинам соответствующих сторон. Докажите, что a1 +...+ an = 0. ![]() ![]() Точки K и L – середины сторон AB и BC
четырёхугольника ABCD. На стороне CD выбрана такая точка M, что CM : DM = 2 : 1. Известно, что DK || BM и ![]() ![]() ![]() а) Докажите, что б) Найдите эти представления в явном виде для n = 2, 3, 4, 5. в) Выразите sinnx при чётном n в виде ![]() ![]() ![]() Из произвольной внутренней точки O выпуклого n-угольника опущены перпендикуляры на стороны (или их продолжения). На каждом перпендикуляре от точки O по направлению к стороне построен вектор, длина которого равна половине длины той стороны, на которую опущен перпендикуляр. Определить сумму построенных векторов. ![]() ![]() ![]() Сторона ромба ABCD равна 6. Расстояние между центрами окружностей, описанных около треугольников ABC и BCD , равно 8. Найдите радиусы этих окружностей. ![]() ![]() |
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 993]
В треугольнике ABC точки A', B', C' лежат на сторонах BC, CA и AB соответственно. Известно, что ∠AC'B' = ∠B'A'C, ∠CB'A' = ∠A'C'B, ∠BA'C' = ∠C'B'A. Докажите, что точки A', B', C' – середины сторон треугольника ABC.
В треугольнике ABC высоты AA1 и CC1 пересекаются в точке H, лежащей внутри треугольника. Известно, что H – середина AA1, а CH : HC1 = 2 : 1. Найдите величину угла B.
Точки K и L – середины сторон AB и BC
четырёхугольника ABCD. На стороне CD выбрана такая точка M, что CM : DM = 2 : 1. Известно, что DK || BM и
На сторонах единичного квадрата отметили точки K, L, M и N так, что прямая KM параллельна двум сторонам квадрата, а прямая LN – двум другим сторонам квадрата. Отрезок KL отсекает от квадрата треугольник периметра 1. Треугольник какой площади отсекает от квадрата отрезок MN?
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 993] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |