ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Стереометрия
>>
Тетраэдр и пирамида
>>
Замечательные элементы тетраэдра и пирамиды
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Среди вершин любого ли многогранника можно выбрать четыре вершины тетраэдра, площадь проекции которого на любую плоскость составляет от площади проекции (на ту же плоскость) исходного многогранника: а) больше, чем , б) не меньше, чем , в) не меньше, чем ? Решение |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 37]
1) все грани равновелики; 2) каждое ребро равно противоположному; 3) все грани равны; 4) центры описанной и вписанной сфер совпадают; 5) суммы углов при каждой вершине равны; 6) сумма плоских углов при каждой вершине равна 180o ; 7) развёртка тетраэдра представляет собой остроугольный треугольник, в котором проведены средние линии; 8) все грани – остроугольные треугольники с одинаковым радиусом описанной окружности; 9) ортогональная проекция тетраэдра на каждую из трёх плоскостей, параллельных двум противоположным рёбрам, – прямоугольник; 10) параллелепипед, полученный в результате проведения через противоположные рёбра трёх пар параллельных плоскостей, – прямоугольный; 11) высоты тетраэдра равны; 12) точка пересечения медиан совпадает с центром описанной сферы; 13) точка пересечения медиан совпадает с центром вписанной сферы; 14) сумма плоских углов при трёх вершинах равна 180o ; 15) сумма плоских углов при двух вершинах равна 180o и два противоположных ребра равны.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 37] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|