Страница:
<< 28 29 30 31
32 33 34 >> [Всего задач: 499]
|
|
Сложность: 4 Классы: 9,10,11
|
Дан треугольник ABC. Окружность ω касается описанной окружности Ω треугольника ABC в точке A, пересекает сторону AB в точке K, а также пересекает сторону BC. Касательная CL к окружности ω такова, что отрезок KL пересекает сторону BC в точке T. Докажите, что отрезок BT равен по длине касательной, проведённой из точки B к ω.
На сторонах AB, BC, CA треугольника ABC выбраны точки P,
Q, R соответственно таким образом, что AP = CQ и четырёхугольник RPBQ– вписанный. Касательные к описанной окружности
треугольника ABC в точках A и C пересекают прямые RP и
RQ в точках X и Y соответственно. Докажите, что RX = RY.
Четырёхугольник
ABCD — вписанный. Докажите, что
=
.
Четырёхугольник
ABCD вписан в окружность, при
этом
AB=BD и
AC=BC . Докажите, что
ABC
<60
o .
На стороне
AC треугольника
ABC отмечена точка
D .
Произвольный луч
l , выходящий из вершины
B , пересекает
отрезок
AC в точке
K , а описанную окружность
треугольника
ABC — в точке
L . Докажите, что
описанная окружность треугольника
DKL проходит через
фиксированную точку, отличную от
D и не зависящую
от выбора луча
l .
Страница:
<< 28 29 30 31
32 33 34 >> [Всего задач: 499]