ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Середины сторон выпуклого шестиугольника образуют шестиугольник, противоположные стороны которого параллельны. ![]() ![]() Точка M делит среднюю линию треугольника ABC, параллельную стороне BC, на отрезки, один из которых в три раза длиннее другого. Точка N делит сторону BC на отрезки, один из которых в три раза длиннее другого. В каком отношении прямая MN делит площадь треугольника ABC? ![]() ![]() |
Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 330]
Построить выпуклый четырёхугольник, зная длины всех сторон и отрезка, соединяющего середины диагоналей.
Окружность радиуса 2 проходит через середины трёх сторон треугольника ABC, в котором углы при вершинах A и B равны 30° и 45° соответственно.
На стороне AB параллелограмма ABCD (или на её продолжении) взята точка M, для которой ∠MAD = ∠AMO, где O – точка пересечения диагоналей параллелограмма. Докажите, что MD = MC.
Середины сторон выпуклого шестиугольника образуют шестиугольник, противоположные стороны которого параллельны.
Точка M делит среднюю линию треугольника ABC, параллельную стороне BC, на отрезки, один из которых в три раза длиннее другого. Точка N делит сторону BC на отрезки, один из которых в три раза длиннее другого. В каком отношении прямая MN делит площадь треугольника ABC?
Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 330] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |