ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан выпуклый шестиугольник, каждая диагональ которого, соединяющая противоположные вершины, делит его площадь пополам. ![]() |
Страница: << 90 91 92 93 94 95 96 >> [Всего задач: 507]
В некоторой стране 1985 аэродромов. С каждого из них вылетел самолёт и приземлился на самом удалённом от места старта аэродроме. Могло ли случиться, что в результате все 1985 самолётов оказались на 50 аэродромах? (Землю можно считать плоской, а маршруты прямыми; попарные расстояния между аэродромами предполагаются различными.)
Выпуклый 1993-угольник разрезан на выпуклые семиугольники.
Докажите, что у выпуклого 10n-гранника найдётся n граней с одинаковым числом сторон.
Бильярдный стол имеет форму многоугольника (не обязательно выпуклого), у которого соседние стороны перпендикулярны друг другу. Вершины этого многоугольника – лузы, при попадании в которые шар там и остаётся. Из вершины A с (внутренним) углом 90° выпущен шар, который отражается от бортов (сторон многоугольника) по закону "угол падения равен углу отражения". Докажите, что он никогда не вернётся в вершину A.
Дан выпуклый шестиугольник, каждая диагональ которого, соединяющая противоположные вершины, делит его площадь пополам.
Страница: << 90 91 92 93 94 95 96 >> [Всего задач: 507] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |