ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Для некоторых 2011 натуральных чисел выписали на доску все их 2011·1005 попарных сумм.
Могло ли оказаться, что ровно треть выписанных сумм делится на 3, и ещё ровно треть из них дают остаток 1 при делении на 3?

   Решение

Задачи

Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 2440]      



Задача 116629

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
Сложность: 3
Классы: 9,10,11

Автор: Фольклор

Решите уравнение в целых числах:  n4 + 2n² + 2n² + 2n + 1 = m². 

Прислать комментарий     Решение

Задача 116634

Темы:   [ Арифметика остатков (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3
Классы: 8,9,10

Для некоторых 2011 натуральных чисел выписали на доску все их 2011·1005 попарных сумм.
Могло ли оказаться, что ровно треть выписанных сумм делится на 3, и ещё ровно треть из них дают остаток 1 при делении на 3?

Прислать комментарий     Решение

Задача 116660

Темы:   [ Делимость чисел. Общие свойства ]
[ Принцип крайнего (прочее) ]
Сложность: 3
Классы: 5,6,7

Пятизначное число называется неразложимым, если оно не раскладывается в произведение двух трёхзначных чисел.
Какое наибольшее количество неразложимых пятизначных чисел может идти подряд?

Прислать комментарий     Решение

Задача 116736

Темы:   [ Арифметика остатков (прочее) ]
[ Разложение на множители ]
Сложность: 3
Классы: 7,8,9

Автор: Фольклор

Является ли простым число  2011·2111 + 2500?

Прислать комментарий     Решение

Задача 116818

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9

Автор: Жуков Г.

Пусть C(n) – количество различных простых делителей числа n. (Например,  C(10) = 2,  C(11) = 1,  C(12) = 2.)
Конечно или бесконечно число таких пар натуральных чисел  (a, b),  что  a ≠ b  и  C(a + b) = C(a) + C(b)?

Прислать комментарий     Решение

Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .