ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Каждое из рёбер полного графа с 17 вершинами покрашено в один из трёх цветов.
Докажите, что есть три вершины, все рёбра между которыми – одного цвета.

   Решение

Задачи

Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 367]      



Задача 117017

Темы:   [ Объединение, пересечение и разность множеств ]
[ Принцип крайнего (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 5,6,7

Автор: Фольклор

В классе 27 учеников. Каждый из учеников класса занимается не более чем в двух кружках, причём для каждых двух учеников существует кружок, в котором они занимаются вместе. Докажите, что найдётся кружок, в котором занимаются не менее 18 учеников.

Прислать комментарий     Решение

Задача 30816

Темы:   [ Теория графов (прочее) ]
[ Раскраски ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 7,8

Каждое из рёбер полного графа с 17 вершинами покрашено в один из трёх цветов.
Докажите, что есть три вершины, все рёбра между которыми – одного цвета.

Прислать комментарий     Решение

Задача 32012

Темы:   [ Теория алгоритмов (прочее) ]
[ Двоичная система счисления ]
[ Принцип Дирихле (прочее) ]
[ Оценка + пример ]
Сложность: 4
Классы: 7,8,9

В колоде 16 карт, пронумерованных сверху вниз. Разрешается снять часть колоды сверху, после чего снятую и оставшуюся части колоды, не переворачивая "врезать" друг в друга. Может ли случиться, что после нескольких таких операций карты окажутся пронумерованными снизу вверх? Если да, то за какое наименьшее число операций это может произойти?

Прислать комментарий     Решение

Задача 65675

Темы:   [ Десятичная система счисления ]
[ Правило произведения ]
[ Принцип Дирихле (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9,10

Существует ли 2016-значное число, перестановкой цифр которого можно получить 2016 разных 2016-значных полных квадратов?

Прислать комментарий     Решение

Задача 65744

Темы:   [ Замощения костями домино и плитками ]
[ Полуинварианты ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 8,9,10

Из клетчатого бумажного квадрата 100×100 вырезали по границам клеток 1950 доминошек (двуклеточных прямоугольников). Докажите, что из оставшейся части можно вырезать по границам клеток четырёхклеточную фигурку вида Т – возможно, повёрнутую. (Если такая фигурка уже есть среди оставшихся частей, считается, что её получилось вырезать.)

Прислать комментарий     Решение

Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 367]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .