ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Окружность пересекает сторону AB треугольника ABC в точках С1, С2, сторону BС – в точках A1, A2, сторону СA – в точках B1, B2. Известно, что перпендикуляры к сторонам AB, BC, CA, восставленные соответственно в точках С1, B1, A1, пересекаются в одной точке. Докажите, что перпендикуляры к сторонам AB, BC, CA, восставленные соответственно в точках С2, B2, A2, также пересекаются в одной точке. Решение |
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 401]
Прямые, касающиеся окружности в точках A и B, пересекаются в точке M, а прямые, касающиеся той же окружности в точках C и D, пересекаются в точке N, причём NC MA и ND MB. Докажите, что AB CD или AB || CD.
Окружность пересекает сторону AB треугольника ABC в точках С1, С2, сторону BС – в точках A1, A2, сторону СA – в точках B1, B2. Известно, что перпендикуляры к сторонам AB, BC, CA, восставленные соответственно в точках С1, B1, A1, пересекаются в одной точке. Докажите, что перпендикуляры к сторонам AB, BC, CA, восставленные соответственно в точках С2, B2, A2, также пересекаются в одной точке.
Две окружности пересекаются в точках A и B. Через точку A проведена прямая, вторично пересекающая первую окружность в точке C, а вторую – в точке D. Пусть M и N – середины дуг BC и BD, не содержащих точку A, а K – середина отрезка CD. Докажите, что ∠MKN = 90°. (Можно считать, что точки C и D лежат по разные стороны от точки A).
На двух сторонах AB и BC правильного 2n-угольника взято по точке K и N, причём угол KEN, где E – вершина, противоположная B, равен 180°/2n. Докажите, что NE – биссектриса угла KNC.
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 401] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|