ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Найдите объём правильной треугольной пирамиды со стороной основания a и боковым ребром b .

Вниз   Решение


Найдите площадь полной поверхности правильного тетраэдра с ребром, равным a .

ВверхВниз   Решение


На стороне AB треугольника ABC отмечена точка D, причём  ∠BCD = ∠A.  Известно, что  BC = a,  AC = b,  AB = c.  Найдите CD.

ВверхВниз   Решение


В треугольнике $ABC$ $(\angle C=90^{\circ})$, $CH$ – высота; $HA_{1}, HB_{1}$ – биссектрисы углов $\angle CHB, \angle AHC$ соответственно; $E, F$ – середины отрезков $HB_{1}$ и $HA_{1}$ соответственно. Докажите, что прямые $AE$ и $BF$ пересекаются на биссектрисе угла $ACB$.

ВверхВниз   Решение


Через общую точку A окружностей S1 и S2 проведите прямую l так, чтобы разность длин хорд, высекаемых на l окружностями S1 и S2 имела заданную величину a.

ВверхВниз   Решение


Во вписанном четырёхугольнике ABCD через вершины A, B и точку P пересечения диагоналей проведена окружность, пересекающая сторону BC в точке E. Докажите, что если AB = AD, то CD = CE.

Вверх   Решение

Задачи

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 499]      



Задача 52478

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вписанный угол равен половине центрального ]
Сложность: 4
Классы: 8,9

Во вписанном четырёхугольнике ABCD через вершины A, B и точку P пересечения диагоналей проведена окружность, пересекающая сторону BC в точке E. Докажите, что если AB = AD, то CD = CE.

Прислать комментарий     Решение


Задача 52813

Темы:   [ Вписанные четырехугольники ]
[ Вписанный угол равен половине центрального ]
Сложность: 4
Классы: 8,9

Дан равнобедренный треугольник ABC с основанием AC. Окружность радиуса R с центром в точке O проходит через точки A и B и пересекает прямую BC в точке M, отличной от B и C. Найдите расстояние от точки O до центра описанной окружности треугольника ACM.

Прислать комментарий     Решение

Задача 52911

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

В окружность вписан четырёхугольник ABCD , диагонали которого взаимно перпендикулярны и пересекаются в точке E . Прямая, проходящая через точку E и перпендикулярная к BC , пересекает сторону AD в точке M . Докажите, что EM — медиана треугольника AED и найдите её длину, если AB = 7 , CE = 3 , ADB = α .
Прислать комментарий     Решение


Задача 53724

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4
Классы: 8,9

Четырёхугольник ABCD вписан в окружность с центром O. Докажите, что четыре точки, в которых перпендикуляры, опущенные из точки O на стороны AB и CD, пересекают диагонали AC и BD, лежат на одной окружности.

Прислать комментарий     Решение


Задача 56499

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Вспомогательные равные треугольники ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 8,9

На сторонах AB, BC, CD и DA вписанного четырёхугольника ABCD, длины которых равны a, b, c и d, внешним образом построены прямоугольники размером a×с, b×d, с×a и d×b. Докажите, что их центры являются вершинами прямоугольника.

Прислать комментарий     Решение

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 499]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .