Страница:
<< 30 31 32 33 34 35 36 >> [Всего задач: 239]
Пусть O – центр описанной окружности остроугольного треугольника ABC, T – центр описанной окружности треугольника AOC, M – середина AC. На сторонах AB и BC выбраны точки D и E соответственно так, что ∠BDM = ∠BEM = ∠B. Докажите, что BT ⊥ DE.
В равностороннем (неправильном) пятиугольнике ABCDE угол ABC вдвое больше угла DBE. Найдите величину угла ABC.
Биссектрисы углов A и C треугольника ABC пересекают его стороны в точках A1 и C1, а описанную окружность этого треугольника – в точках A0 и C0 соответственно. Прямые A1C1 и A0C0 пересекаются в точке P. Докажите, что отрезок, соединяющий P с центром вписанной окружности треугольника ABC, параллелен AC.
Угловая величина дуги AB равна α < 90°. На продолжении радиуса OA отложен отрезок AC, равный хорде AB, и точка C соединена с B. Найдите угол ACB.
В треугольнике ABC угол C прямой. Из центра C радиусом AC описана дуга ADE, пересекающая гипотенузу в точке D, а катет CB – в точке E.
Найдите угловые величины дуг AD и DE, если ∠B = 40°.
Страница:
<< 30 31 32 33 34 35 36 >> [Всего задач: 239]