ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Вычислите сумму

$\displaystyle {\frac{1}{1\cdot2}}$ + $\displaystyle {\frac{2}{1\cdot3}}$ +...+ $\displaystyle {\frac{F_{n}}{F_{n-1}\cdot F_{n+1}}}$.


Вниз   Решение


На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1, причем  AC1 = AB1, BA1 = BC1 и CA1 = CB1. Докажите, что A1, B1 и C1 — точки касания вписанной окружности со сторонами.

ВверхВниз   Решение


О том, как прыгают кузнечики. Предположим, что имеется лента, разбитая на клетки и уходящая вправо до бесконечности. На первой клетке этой ленты сидит кузнечик. Из любой клетки кузнечик может перепрыгнуть либо на одну, либо на две клетки вправо. Сколькими способами кузнечик может добраться до n-ой от начала ленты клетки?

ВверхВниз   Решение


Пусть характеристическое уравнение ( 11.3) последовательности {an} имеет два различных корня x1 и x2. Докажите, что при фиксированных a0, a1 существует ровно одна пара чисел c1, c2 такая, что

an = c1x1n + c2x2n        (n = 0, 1, 2,...).


ВверхВниз   Решение


Пусть O - центр круга, описанного около треугольника ABC. Найдите угол OAC, если: а) $ \angle$B = 50o; б) $ \angle$B = 126o.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 787]      



Задача 52619

Тема:   [ Вписанные и описанные окружности ]
Сложность: 2+
Классы: 8,9

Один из острых углов прямоугольного треугольника равен 25o. Под каким углом виден каждый его катет из центра описанной окружности?

Прислать комментарий     Решение


Задача 52622

Темы:   [ Вписанные и описанные окружности ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
Сложность: 2+
Классы: 8,9

Постройте равнобедренный треугольник по основанию и радиусу описанной окружности.

Прислать комментарий     Решение


Задача 56830

Темы:   [ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
Сложность: 2+
Классы: 7,8,9

На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1, причем  AC1 = AB1, BA1 = BC1 и CA1 = CB1. Докажите, что A1, B1 и C1 — точки касания вписанной окружности со сторонами.
Прислать комментарий     Решение


Задача 77937

Темы:   [ Вписанные и описанные окружности ]
[ Неравенства для углов треугольника ]
Сложность: 2+
Классы: 8,9

В $ \Delta$ABC вписана окружность, которая касается его сторон в точках L, M и N. Докажите, что $ \Delta$LMN всегда остроугольный (независимо от вида $ \Delta$ABC).
Прислать комментарий     Решение


Задача 52618

Темы:   [ Вписанные и описанные окружности ]
[ Вписанный угол равен половине центрального ]
Сложность: 2+
Классы: 8,9

Пусть O - центр круга, описанного около треугольника ABC. Найдите угол OAC, если: а) $ \angle$B = 50o; б) $ \angle$B = 126o.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 787]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .