ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
На стороне BC треугольника BCD выбрана точка E, а на стороне
BD — точка F, причём угол BEF равен углу BDC. Площадь круга,
описанного около треугольника CFD, в 5 раз меньше площади круга,
описанного около треугольника BEF. Отношение площади
четырёхугольника CEFD к площади треугольника BEF равно
![]() |
Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 496]
Окружность, проведённая через вершины B и C треугольника
ABC, пересекает сторону AB в точке D, а сторону AC —
в точке E. Площадь круга, ограниченного этой окружностью, в 12
раз меньше площади круга, описанного около треугольника ADE.
Отношение площади треугольника ADE к площади четырёхугольника
BDEC равно
На стороне BC треугольника BCD выбрана точка E, а на стороне
BD — точка F, причём угол BEF равен углу BDC. Площадь круга,
описанного около треугольника CFD, в 5 раз меньше площади круга,
описанного около треугольника BEF. Отношение площади
четырёхугольника CEFD к площади треугольника BEF равно
Точки M и N на сторонах BC и AB равностороннего треугольника ABC выбраны так, что площадь треугольника AKC равна площади четырёхугольника BMKN (K — точка пересечения отрезков AM и CN). Найдите угол AKC.
Трапеция АВСD с основаниями AB и CD вписана в окружность. Докажите, что четырёхугольник, образованный ортогональными проекциями любой точки этой окружности на прямые AC, BC, AD и BD, является вписанным.
Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 496] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |