ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Прямые, касающиеся окружности в точках A и B, пересекаются в точке M, а прямые, касающиеся той же окружности в точках C и D, пересекаются в точке N, причём NC $ \perp$ MA и ND $ \perp$ MB. Докажите, что AB $ \perp$ CD или AB || CD.

   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 401]      



Задача 54674

Тема:   [ Поворот помогает решить задачу ]
Сложность: 4
Классы: 8,9

Прямые, касающиеся окружности в точках A и B, пересекаются в точке M, а прямые, касающиеся той же окружности в точках C и D, пересекаются в точке N, причём NC $ \perp$ MA и ND $ \perp$ MB. Докажите, что AB $ \perp$ CD или AB || CD.

Прислать комментарий     Решение


Задача 34995

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Диаметр, основные свойства ]
Сложность: 4
Классы: 7,8,9

Окружность пересекает сторону AB треугольника ABC в точках С1, С2, сторону – в точках A1, A2, сторону СA – в точках B1, B2. Известно, что перпендикуляры к сторонам AB, BC, CA, восставленные соответственно в точках С1, B1, A1, пересекаются в одной точке. Докажите, что перпендикуляры к сторонам AB, BC, CA, восставленные соответственно в точках С2, B2, A2, также пересекаются в одной точке.

Прислать комментарий     Решение

Задача 54912

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Вспомогательные равные треугольники ]
Сложность: 4
Классы: 8,9

Две окружности пересекаются в точках A и B. Через точку A проведена прямая, вторично пересекающая первую окружность в точке C, а вторую – в точке D. Пусть M и N – середины дуг BC и BD, не содержащих точку A, а K – середина отрезка CD. Докажите, что  ∠MKN = 90°.  (Можно считать, что точки C и D лежат по разные стороны от точки A).

Прислать комментарий     Решение

Задача 55755

Темы:   [ Поворот помогает решить задачу ]
[ Правильные многоугольники ]
[ Углы между биссектрисами ]
Сложность: 4
Классы: 8,9

На двух сторонах AB и BC правильного 2n-угольника взято по точке K и N, причём угол KEN, где E – вершина, противоположная B, равен 180°/2n. Докажите, что NE – биссектриса угла KNC.

Прислать комментарий     Решение

Задача 57849

Тема:   [ Свойства симметрии и центра симметрии ]
Сложность: 4
Классы: 9

На отрезке AB дано n пар точек, симметричных относительно его середины; n точек окрашено в синий цвет, остальные — в красный. Докажите, что сумма расстояний от A до синих точек равна сумме расстояний от B до красных точек.
Прислать комментарий     Решение


Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 401]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .