ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В трапеции MNPQ даны основания  MQ = 4,  NP = 2  и углы M и Q при основании, равные соответственно  arctg 5  и  arctg ½.
Найдите радиус окружности, касающейся диагоналей трапеции MP и NQ и основания MQ.

   Решение

Задачи

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 404]      



Задача 54827

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Вспомогательные подобные треугольники ]
[ Трапеции (прочее) ]
Сложность: 4-
Классы: 8,9

В трапеции ABCD даны основания  AD = 4,  BC = 1  и углы A и D при основании, равные соответственно  arctg 2  и  arctg 3.
Найдите радиус окружности, вписанной в треугольник CBE, где E – точка пересечения диагоналей трапеции.

Прислать комментарий     Решение

Задача 54828

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Вспомогательные подобные треугольники ]
[ Трапеции (прочее) ]
Сложность: 4-
Классы: 8,9

В трапеции MNPQ даны основания  MQ = 4,  NP = 2  и углы M и Q при основании, равные соответственно  arctg 5  и  arctg ½.
Найдите радиус окружности, касающейся диагоналей трапеции MP и NQ и основания MQ.

Прислать комментарий     Решение

Задача 54897

Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 4-
Классы: 8,9

Через центр O вписанной окружности ω треугольника ABC проведена прямая, параллельная стороне BC и пересекающая стороны AB и AC соответственно в точках M и N.
SABC = BC = 2,  а отрезок AO в четыре раза больше радиуса ω. Найдите периметр треугольника AMN.

Прислать комментарий     Решение

Задача 55160

Темы:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4-
Классы: 8,9

Докажите,что площадь любого четырёхугольника ABCD не превосходит $ {\frac{1}{2}}$(AB . BC + AD . DC).

Прислать комментарий     Решение


Задача 66828

Темы:   [ Симметрия помогает решить задачу ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 4-
Классы: 8,9,10,11

Два остроугольных треугольника $ABC$ и $A_{1}B_{1}C_{1}$ таковы, что точки $B_{1}$ и $C_{1}$ лежат на стороне $BC$, а точка $A_{1}$ – внутри треугольника ABC. Пусть $S$ и $S_{1}$ – соответственно площади этих треугольников. Докажите, что  $\frac{S}{AB+AC} > \frac{S_1}{A_1B_1 + A_1C_1}$.

Прислать комментарий     Решение

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 404]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .