ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

n одинаковых монет лежат на столе, образуя замкнутую цепочку. Центры монет образуют выпуклый многоугольник. Сколько оборотов сделает монета такого же размера за время, пока она один раз прокатится по внешней стороне всей цепочки, как показано на рисунке?

Как изменится ответ, если радиус этой монеты в k раз больше радиуса каждой из монет цепочки?

Вниз   Решение


Докажите, что диагонали AD, BE и CF описанного шестиугольника ABCDEF пересекаются в одной точке (Брианшон).

Вверх   Решение

Задачи

Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 508]      



Задача 111916

Темы:   [ Теория игр (прочее) ]
[ Правильные многоугольники ]
[ Разбиения на пары и группы; биекции ]
Сложность: 5-
Классы: 9,10,11

Дано целое число  n > 1.  Двое игроков по очереди отмечают точки на окружности: первый – красным цветом, второй – синим (отмечать одну и ту же точку дважды нельзя). Когда отмечено по n точек каждого цвета, игра заканчивается. После этого каждый игрок находит на окружности дугу наибольшей длины с концами своего цвета, на которой больше нет отмеченных точек. Игрок, у которого найденная длина больше, выиграл (в случае равенства длин дуг, а также при отсутствии таких дуг у обоих игроков – ничья). Кто из играющих может всегда выигрывать, как бы ни играл противник?

Прислать комментарий     Решение

Задача 116135

Темы:   [ Шестиугольники ]
[ Вписанные и описанные многоугольники ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 5-
Классы: 8,9

Противоположные стороны выпуклого шестиугольника параллельны. Hазовём высотой такого шестиугольника отрезок с концами на прямых, содержащих противолежащие стороны и перпендикулярный им. Докажите, что вокруг этого шестиугольника можно описать окружность тогда и только тогда, когда его высоты можно параллельно перенести так, чтобы они образовали треугольник.

Прислать комментарий     Решение

Задача 60868

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Правильные многоугольники ]
[ Метод спуска ]
[ Доказательство от противного ]
[ Рациональные и иррациональные числа ]
[ Целочисленные и целозначные многочлены ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 5
Классы: 9,10,11

Дан лист клетчатой бумаги. Докажите, что при  n ≠ 4  не существует правильного n-угольника с вершинами в узлах решетки.

Прислать комментарий     Решение

Задача 73564

Темы:   [ Центральный угол. Длина дуги и длина окружности ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Композиции поворотов ]
[ Обратные тригонометрические функции ]
Сложность: 5
Классы: 9,10,11

n одинаковых монет лежат на столе, образуя замкнутую цепочку. Центры монет образуют выпуклый многоугольник. Сколько оборотов сделает монета такого же размера за время, пока она один раз прокатится по внешней стороне всей цепочки, как показано на рисунке?

Как изменится ответ, если радиус этой монеты в k раз больше радиуса каждой из монет цепочки?
Прислать комментарий     Решение


Задача 56729

 [Теорема Брианшона]
Темы:   [ Радикальная ось ]
[ Вписанные и описанные многоугольники ]
[ Шестиугольники ]
Сложность: 6
Классы: 8,9,10

Докажите, что диагонали AD, BE и CF описанного шестиугольника ABCDEF пересекаются в одной точке (Брианшон).
Прислать комментарий     Решение


Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 508]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .