ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что доску размером 10×10 клеток нельзя разрезать на фигурки в форме буквы T, состоящие из четырёх клеток.

   Решение

Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 629]      



Задача 35533

Тема:   [ Четность и нечетность ]
Сложность: 3+
Классы: 7,8

Замкнутая несамопересекающаяся кривая разбивает плоскость на две области: внутреннюю и внешнюю. Два человека отправляются по произвольным маршрутам из разных точек плоскости, причём ни один из них не знает, в какой из областей он находился.
Докажите, что если они встретятся, то всегда смогут выяснить, были они вначале в одной или в разных областях.

Прислать комментарий     Решение

Задача 35666

Тема:   [ Четность и нечетность ]
Сложность: 3+
Классы: 8,9

Дети перебрасываются красными, белыми и синими мячами. Каждый ребенок бросил и поймал в сумме три мяча, причём это мячи различных цветов. Кроме того, некоторые три мяча были брошены, но никем не пойманы. Докажите, что эти три мяча – трёх различных цветов.

Прислать комментарий     Решение

Задача 58161

Темы:   [ Четность и нечетность ]
[ Ломаные ]
Сложность: 3+
Классы: 7,8

На плоскости дана замкнутая ломаная с конечным числом звеньев. Прямая l пересекает её ровно в 1985 точках.
Докажите, что существует прямая, пересекающая эту ломаную более чем в 1985 точках.

Прислать комментарий     Решение

Задача 58182

Темы:   [ Четность и нечетность ]
[ Замощения костями домино и плитками ]
[ Шахматная раскраска ]
Сложность: 3+
Классы: 7,8,9

Докажите, что доску размером 10×10 клеток нельзя разрезать на фигурки в форме буквы T, состоящие из четырёх клеток.

Прислать комментарий     Решение

Задача 60632

Темы:   [ Четность и нечетность ]
[ Обход графов ]
[ Степень вершины ]
Сложность: 3+
Классы: 8,9,10

Город имеет форму квадрата 5×5:

Какую наименьшую длину может иметь маршрут, если нужно пройти по каждой улице этого города и вернуться в прежнее место? (По каждой улице можно проходить любое число раз.)

Прислать комментарий     Решение

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 629]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .