ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) Докажите, что если A, B, C и D — произвольные точки плоскости, то AB . CD + BC . AD б) Докажите, что если A1, A2, ...A6 — произвольные точки плоскости, то в) Докажите, что (нестрогое) неравенство Птолемея обращается в равенство тогда и только тогда, когда ABCD — (выпуклый) вписанный четырехугольник. г) Докажите, что неравенство из задачи б) обращается в равенство тогда и только тогда, когда A1...A6 — вписанный шестиугольник. ![]() |
Страница: << 94 95 96 97 98 99 100 >> [Всего задач: 507]
б) Докажите, что если A1, A2, ...A6 — произвольные точки плоскости, то в) Докажите, что (нестрогое) неравенство Птолемея обращается в равенство тогда и только тогда, когда ABCD — (выпуклый) вписанный четырехугольник. г) Докажите, что неравенство из задачи б) обращается в равенство тогда и только тогда, когда A1...A6 — вписанный шестиугольник.
(Разумеется, в условии подразумевается, что никакие три точки не должны лежать на одной прямой – без этого ограничения можно разместить сколько угодно точек.)
Вершину A параллелограмма ABCD соединили отрезками с серединами сторон BC и CD. Один из этих отрезков оказался вдвое длиннее другого. Определите, каким является угол ВАD: острым, прямым или тупым.
Дан правильный семиугольник A1A2A3A4A5A6A7. Прямые A2A3 и A5A6 пересекаются в точке X, а прямые A3A5 и A1A6 – в точке Y.
Прямоугольник ABCD (AB = a, BC = b) сложили так, что получился пятиугольник площади S (C легла в A). Докажите, что S < ¾ ab.
Страница: << 94 95 96 97 98 99 100 >> [Всего задач: 507] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |