ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите равенство  (Fn, Fm) = F(m, n).

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 233]      



Задача 60562

Тема:   [ Числа Фибоначчи ]
Сложность: 3+
Классы: 8,9

Некоторый алфавит состоит из 6 букв, которые для передачи по телеграфу кодированы так:

.          -          . .          - -          . -          -   .

При передаче одного слова не сделали промежутков, отделяющих букву от буквы, так что получилась сплошная цепочка из точек и тире, содержащая 12 знаков. Сколькими способами можно прочитать переданное слово?

Прислать комментарий     Решение

Задача 60565

Темы:   [ Числа Фибоначчи ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Докажите следующие свойства чисел Фибоначчи:

а) F1 + F2 +...+ Fn = Fn + 2 - 1; в) F2 + F4 +...+ F2n = F2n + 1 - 1;
б) F1 + F3 +...+ F2n - 1 = F2n; г) F12 + F22 +...+ Fn2 = FnFn + 1.

Прислать комментарий     Решение

Задача 60569

Темы:   [ Числа Фибоначчи ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3+
Классы: 9,10,11

Вычислите сумму

$\displaystyle {\frac{1}{1\cdot2}}$ + $\displaystyle {\frac{2}{1\cdot3}}$ +...+ $\displaystyle {\frac{F_{n}}{F_{n-1}\cdot F_{n+1}}}$.


Прислать комментарий     Решение

Задача 60573

Темы:   [ Числа Фибоначчи ]
[ Алгоритм Евклида ]
Сложность: 3+
Классы: 8,9,10,11

Докажите, что два соседних числа Фибоначчи Fn–1 и Fn  (n ≥ 1)  взаимно просты.

Прислать комментарий     Решение

Задача 60574

 [Теорема Люка]
Темы:   [ Числа Фибоначчи ]
[ Алгоритм Евклида ]
Сложность: 3+
Классы: 9,10,11

Докажите равенство  (Fn, Fm) = F(m, n).

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 233]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .