Страница:
<< 27 28 29 30
31 32 33 >> [Всего задач: 367]
|
|
Сложность: 3 Классы: 8,9,10,11
|
Докажите, что любые m чисел x1,..., xm, попарно не сравнимые по модулю m, представляют собой полную систему вычетов по модулю m.
|
|
Сложность: 3 Классы: 5,6,7
|
Известно, что ЖЖ + Ж = МЁД. На какую цифру оканчивается произведение: В·И·Н·Н·И·П·У·Х
(разными буквами обозначены разные цифры, одинаковыми – одинаковые)?
В спортивном клубе проходит первенство по теннису. Проигравший партию выбывает из борьбы (ничьих в теннисе не бывает). Пару для следующей партии определяет жребий. Первую партию судил приглашённый судья, а каждую следующую партию должен судить член клуба, не участвующий в ней и не судивший ранее. Могло ли так оказаться, что очередную партию судить некому?
|
|
Сложность: 3 Классы: 8,9,10,11
|
Жили-были двадцать шпионов. Каждый из них написал донос на десять своих коллег.
Докажите, что не менее, чем десять пар шпионов донесли друг на друга.
В компании из семи мальчиков каждый имеет среди остальных не менее трёх братьев. Докажите, что все семеро – братья.
Страница:
<< 27 28 29 30
31 32 33 >> [Всего задач: 367]