ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Квадраты двух зеркальных чисел 12 и 21 также являются зеркальными числами (144 и 441). Какие двузначные числа обладают аналогичным свойством? И дополнительный вопрос: в каких системах счисления число 441 будет полным квадратом?

   Решение

Задачи

Страница: << 88 89 90 91 92 93 94 >> [Всего задач: 598]      



Задача 107778

Темы:   [ Делимость чисел. Общие свойства ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 7,8,9

Докажите, что если в числе 12008 между нулями вставить любое количество троек, то получится число, делящееся на 19.

Прислать комментарий     Решение

Задача 107977

Темы:   [ Признаки делимости на 3 и 9 ]
[ Десятичная система счисления ]
[ Арифметика остатков (прочее) ]
[ Перебор случаев ]
Сложность: 3+
Классы: 7,8,9

Обозначим через S(x) сумму цифр натурального числа x. Решить уравнения:
  а)  x + S(x) + S(S(x)) = 1993;
  б)  x + S(x) + S(S(x)) + S(S(S(x))) = 1993.

Прислать комментарий     Решение

Задача 110193

Темы:   [ Признаки делимости на 11 ]
[ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

Даны 19 карточек. Можно ли на каждой из карточек написать ненулевую цифру так, чтобы из этих карточек можно было сложить ровно одно 19-значное число, кратное на 11?

Прислать комментарий     Решение

Задача 60902

Темы:   [ Теория алгоритмов (прочее) ]
[ Двоичная система счисления ]
Сложность: 3+
Классы: 8,9,10

Бинарный метод возведения в степень. Предположим, что необходимо возвести число x в степень n. Если, например, n = 16, то это можно сделать выполнив 15 умножений x16 = x . x . ... . x, а можно обойтись лишь четырьмя:

x1 = x . x = x2,    x2 = x1 . x1 = x4,    x3 = x2 . x2 = x8,    x4 = x3 . x3 = x16.

Пусть

n = 2e1 + 2e2 +...+ 2er        (e1 > e2 >...> er $\displaystyle \geqslant$ 0).

Придумайте алгоритм, который позволял бы вычислять xn при помощи

b(n) = e1 + $\displaystyle \nu$(n) - 1

умножений, где $ \nu$(n) = r — число единиц в двоичном представлении числа n.

Прислать комментарий     Решение

Задача 61534

Темы:   [ Десятичная система счисления ]
[ Системы счисления (прочее) ]
Сложность: 3+
Классы: 8,9,10

Квадраты двух зеркальных чисел 12 и 21 также являются зеркальными числами (144 и 441). Какие двузначные числа обладают аналогичным свойством? И дополнительный вопрос: в каких системах счисления число 441 будет полным квадратом?

Прислать комментарий     Решение

Страница: << 88 89 90 91 92 93 94 >> [Всего задач: 598]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .