ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан выпуклый семиугольник. Выбираются четыре произвольных его угла и вычисляются их синусы, от остальных трёх углов вычисляются косинусы. Оказалось, что сумма таких семи чисел не зависит от изначального выбора четырёх углов. Докажите, что у этого семиугольника найдутся четыре равных угла.

   Решение

Задачи

Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 367]      



Задача 60418

Темы:   [ Теория графов (прочее) ]
[ Сочетания и размещения ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 9,10,11

В компании из 10 человек произошло 14 попарных ссор. Докажите, что все равно можно составить компанию из трёх друзей.

Прислать комментарий     Решение

Задача 60737

Темы:   [ Арифметика остатков (прочее) ]
[ Малая теорема Ферма ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 9,10,11

Пусть p – простое число,  p ≠ 2, 5.  Докажите, что существует число вида 1...1, кратное p.
Придумайте два решения задачи: одно, использующее теорему Ферма (задача 60736), и второе – принцип Дирихле.

Прислать комментарий     Решение

Задача 64448

Темы:   [ Неравенство треугольника (прочее) ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9,10

Есть 100 красных, 100 жёлтых и 100 зелёных палочек. Известно, что из любых трёх палочек трёх разных цветов можно составить треугольник.
Докажите, что найдётся такой цвет, что из любых трёх палочек этого цвета можно составить треугольник.

Прислать комментарий     Решение

Задача 64634

Темы:   [ Многоугольники (прочее) ]
[ Применение тригонометрических формул (геометрия) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 10,11

Дан выпуклый семиугольник. Выбираются четыре произвольных его угла и вычисляются их синусы, от остальных трёх углов вычисляются косинусы. Оказалось, что сумма таких семи чисел не зависит от изначального выбора четырёх углов. Докажите, что у этого семиугольника найдутся четыре равных угла.

Прислать комментарий     Решение

Задача 64846

Темы:   [ Числовые таблицы и их свойства ]
[ Арифметическая прогрессия ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 7,8,9

Дана квадратная таблица. В каждой её клетке стоит либо плюс, либо минус, причём всего плюсов и минусов поровну.
Докажите, что или в каких-то двух строках, или в каких-то двух столбцах одинаковое количество плюсов.

Прислать комментарий     Решение

Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 367]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .