ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите все такие пары различных действительных чисел x и y, что  x100y100 = 299(x – y)  и  x200y200 = 2199(x – y).

   Решение

Задачи

Страница: << 102 103 104 105 106 107 108 >> [Всего задач: 590]      



Задача 116582

Темы:   [ Доказательство от противного ]
[ Разложение на множители ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4
Классы: 8,9,10

Целые числа a и b таковы, что при любых натуральных m и n число  am² + bn²  является точным квадратом. Докажите, что  ab = 0.

Прислать комментарий     Решение

Задача 108483

Темы:   [ Экстремальные свойства. Задачи на максимум и минимум. ]
[ Формула Герона ]
[ Неравенство Коши ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4
Классы: 8,9

Докажите, что из всех треугольников данной площади равносторонний имеет наименьший периметр.

Прислать комментарий     Решение

Задача 57538

Темы:   [ Экстремальные точки треугольника ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Неравенство Коши ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 4+
Классы: 8,9,10

Внутри треугольника ABC взята точка O. Пусть da, db, dc – расстояния от нее до прямых BC, CA, AB.
При каком положении точки O произведение dadbdc будет наибольшим?

Прислать комментарий     Решение

Задача 65714

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Разложение на множители ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4+
Классы: 9,10,11

Найдите все такие пары различных действительных чисел x и y, что  x100y100 = 299(x – y)  и  x200y200 = 2199(x – y).

Прислать комментарий     Решение

Задача 66857

Темы:   [ Арифметика остатков (прочее) ]
[ Последовательности (прочее) ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 4+
Классы: 8,9,10,11

Глеб задумал натуральные числа $N$ и $a$, где  $a < N$ . Число $a$ он написал на доске. Затем Глеб стал проделывать такую операцию: делить $N$ с остатком на последнее выписанное на доску число и полученный остаток от деления также записывать на доску. Когда на доске появилось число 0, он остановился. Мог ли Глеб изначально выбрать такие $N$ и $a$, чтобы сумма выписанных на доске чисел была больше 100$N$?

Прислать комментарий     Решение

Страница: << 102 103 104 105 106 107 108 >> [Всего задач: 590]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .