ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Какое наибольшее количество натуральных чисел, не превосходящих 2016, можно отметить так, чтобы произведение любых двух отмеченных чисел было бы точным квадратом?

   Решение

Задачи

Страница: << 138 139 140 141 142 143 144 >> [Всего задач: 2440]      



Задача 65393

Темы:   [ Уравнения в целых числах ]
[ Перебор случаев ]
Сложность: 4-
Классы: 8,9

Найдите все натуральные числа k, для которых найдутся такие натуральные числа m и n, что  m(m + k) = n(n + 1).

Прислать комментарий     Решение

Задача 65433

Темы:   [ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10,11

Можно ли расставить натуральные числа от 1 до 10 в ряд так, чтобы каждое число было делителем суммы всех предыдущих?

Прислать комментарий     Решение

Задача 65455

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

Трое играют в "камень-ножницы-бумагу". В каждом раунде каждый наугад показывает "камень", "ножницы" или "бумагу". "Камень" побеждает "ножницы", "ножницы" побеждают "бумагу", "бумага" побеждает "камень". Если в раунде было показано ровно два различных элемента (и значит, один из них показали дважды), то игроки (или игрок), показавшие победивший элемент, получают по 1 баллу; иначе баллы никому не начисляются. После нескольких раундов оказалось, что все элементы были показаны одинаковое количество раз. Докажите, что в этот момент сумма набранных всеми баллов делилась на 3.

Прислать комментарий     Решение

Задача 65485

Темы:   [ Делимость чисел. Общие свойства ]
[ Тождественные преобразования ]
Сложность: 4-
Классы: 10,11

У натурального числа n есть такие два различных делителя а и b, что  (а – 1)(b + 2) = n – 2.
Докажите, что число 2n является квадратом натурального числа.

Прислать комментарий     Решение

Задача 65904

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 7,8

Какое наибольшее количество натуральных чисел, не превосходящих 2016, можно отметить так, чтобы произведение любых двух отмеченных чисел было бы точным квадратом?

Прислать комментарий     Решение

Страница: << 138 139 140 141 142 143 144 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .