ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Автор: Лифшиц Ю.

Дан выпуклый 2000-угольник, никакие три диагонали которого не пересекаются в одной точке. Каждая из его диагоналей покрашена в один из 999 цветов. Докажите, что существует треугольник, все стороны которого целиком лежат на диагоналях одного цвета. (Вершины треугольника не обязательно должны оказаться вершинами исходного многоугольника.)

Вниз   Решение


В стране есть N городов. Некоторые пары из них соединены беспосадочными двусторонними авиалиниями. Оказалось, что для любого k  (2 ≤ k ≤ N)  при любом выборе k городов количество авиалиний между этими городами не будет превосходить  2k – 2.  Докажите, что все авиалинии можно распределить между двумя авиакомпаниями так, что не будет замкнутого авиамаршрута, в котором все авиалинии принадлежат одной компании.

ВверхВниз   Решение


Андрей ведёт машину со скоростью 60 км/ч. Он хочет проезжать каждый километр на 1 минуту быстрее. На сколько ему следует увеличить скорость?

ВверхВниз   Решение


Дан треугольник АВС и две прямые l1, l2. Через произвольную точку D на стороне АВ проводится прямая, параллельная l1, пересекающая АС в точке Е, и прямая, параллельная l2, пересекающая ВС в точке F. Построить точку D, для которой отрезок EF имеет наименьшую длину.

Вверх   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 13]      



Задача 64756

Темы:   [ Правильная призма ]
[ Примеры и контрпримеры. Конструкции ]
[ Движение помогает решить задачу ]
Сложность: 4-

Можно ли правильную треугольную призму разрезать на две равные пирамиды?

Прислать комментарий     Решение

Задача 65934

Темы:   [ Четырехугольники (построения) ]
[ Вписанные и описанные окружности ]
[ Экстремальные свойства (прочее) ]
[ Движение помогает решить задачу ]
Сложность: 4
Классы: 9,10,11

Дан треугольник АВС и две прямые l1, l2. Через произвольную точку D на стороне АВ проводится прямая, параллельная l1, пересекающая АС в точке Е, и прямая, параллельная l2, пересекающая ВС в точке F. Построить точку D, для которой отрезок EF имеет наименьшую длину.

Прислать комментарий     Решение

Задача 105211

Темы:   [ Замощения костями домино и плитками ]
[ Развертка помогает решить задачу ]
[ Прямоугольный тетраэдр ]
[ Движение помогает решить задачу ]
[ Метод координат в пространстве (прочее) ]
Сложность: 4+
Классы: 10,11

Можно ли замостить все пространство равными тетраэдрами, все грани которых — прямоугольные треугольники?
Прислать комментарий     Решение


Задача 110152

Темы:   [ Тетраэдр (прочее) ]
[ Параллельность прямых и плоскостей ]
[ Симметрия относительно плоскости ]
[ Движение помогает решить задачу ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 5+
Классы: 10,11

Дана треугольная пирамида ABCD . Сфера S1 , проходящая через точки A , B , C , пересекает ребра AD , BD , CD в точках K , L , M соответственно; сфера S2 , проходящая через точки A , B , D , пересекает ребра AC , BC , DC в точках P , Q , M соответственно. Оказалось, что KL|| PQ . Докажите, что биссектрисы плоских углов KMQ и LMP совпадают.
Прислать комментарий     Решение


Задача 108000

Темы:   [ Максимальное/минимальное расстояние ]
[ Правильный тетраэдр ]
[ Пространственные многоугольники ]
[ Движение помогает решить задачу ]
[ Длины и периметры (геометрические неравенства) ]
[ Медиана пирамиды (тетраэдра) ]
[ Проектирование помогает решить задачу ]
Сложность: 6-
Классы: 10,11

Муха летает внутри правильного тетраэдра с ребром a. Какое наименьшее расстояние она должна пролететь, чтобы побывать на каждой грани и вернуться в исходную точку?
Прислать комментарий     Решение


Страница: << 1 2 3 >> [Всего задач: 13]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .