ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

  По будням Рассеянный Учёный едет на работу по кольцевой линии московского метро от станции "Таганская" до станции "Киевская", а вечером – обратно (см. схему).

  Войдя на станцию, Учёный садится в первый же подошедший поезд. Известно, что в обоих направлениях поезда ходят с примерно равными интервалами, причём по северному маршруту (через "Белорусскую") поезд идёт от "Киевской" до "Таганской" или обратно 17 минут, а по южному маршруту (через "Павелецкую") – 11 минут.   По давней привычке Учёный всё всегда подсчитывает. Однажды он подсчитал, что по многолетним наблюдениям:
  - поезд, идущий против часовой стрелки, приходит на "Киевскую" в среднем через 1 минуту 15 секунд после того, как на неё приходит поезд, идущий по часовой стрелке. То же верно и для "Таганской".
  - на поездку из дома на работу Учёный в среднем тратит на 1 минуту меньше, чем на поездку с работы домой.
  Найдите математическое ожидание интервала между поездами, идущими в одном направлении.

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 144]      



Задача 65783

Темы:   [ Дискретное распределение ]
[ Сочетания и размещения ]
Сложность: 3
Классы: 8,9,10,11

Дана таблица 3×3 (как для игры в крестики-нолики). В четыре случайно выбранные ячейки случайным образом поставили четыре фишки.
Найдите вероятность того, что среди этих четырёх фишек найдутся три, которые стоят в один ряд по вертикали, по горизонтали или по диагонали.

Прислать комментарий     Решение

Задача 66051

Темы:   [ Дискретное распределение ]
[ Средние величины ]
[ Площадь круга, сектора и сегмента ]
Сложность: 3
Классы: 8,9,10

  По будням Рассеянный Учёный едет на работу по кольцевой линии московского метро от станции "Таганская" до станции "Киевская", а вечером – обратно (см. схему).

  Войдя на станцию, Учёный садится в первый же подошедший поезд. Известно, что в обоих направлениях поезда ходят с примерно равными интервалами, причём по северному маршруту (через "Белорусскую") поезд идёт от "Киевской" до "Таганской" или обратно 17 минут, а по южному маршруту (через "Павелецкую") – 11 минут.   По давней привычке Учёный всё всегда подсчитывает. Однажды он подсчитал, что по многолетним наблюдениям:
  - поезд, идущий против часовой стрелки, приходит на "Киевскую" в среднем через 1 минуту 15 секунд после того, как на неё приходит поезд, идущий по часовой стрелке. То же верно и для "Таганской".
  - на поездку из дома на работу Учёный в среднем тратит на 1 минуту меньше, чем на поездку с работы домой.
  Найдите математическое ожидание интервала между поездами, идущими в одном направлении.

Прислать комментарий     Решение

Задача 65264

Темы:   [ Дискретное распределение ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 8,9,10,11

Петя играет в компьютерную игру “Куча камней”. Сначала в куче 16 камней. Игроки по очереди берут из кучи 1, 2, 3 или 4 камня. Выигрывает тот, кто заберёт последний камень. Петя играет впервые и поэтому каждый раз берёт случайное число камней, при этом он не нарушает правила игры. Компьютер играет по следующему алгоритму: на каждом ходу он берёт столько камней, чтобы оказаться в наиболее выгодном положении. Игру начинает всегда Петя. С какой вероятностью Петя выиграет?

Прислать комментарий     Решение

Задача 65265

Тема:   [ Дискретное распределение ]
Сложность: 3+
Классы: 8,9,10,11

Петя предлагает Васе сыграть в следующую игру. Петя дает Васе две коробки с конфетами. В каждой из двух коробок шоколадные конфеты и карамельки. Всего в обеих коробках 25 конфет. Петя предлагает Васе взять из каждой коробки по конфете. Если обе конфеты окажутся шоколадными, то Вася выиграл. В противном случае выиграл Петя. Вероятность того, что Васе достанутся две карамельки, равна 0,54. У кого больше шансов на победу?

Прислать комментарий     Решение

Задача 65266

Темы:   [ Дискретное распределение ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Линейные неравенства и системы неравенств ]
Сложность: 3+
Классы: 8,9,10,11

На каждой из четырёх карточек написано натуральное число. Берут наугад две карточки и складывают числа на них. С равной вероятностью эта сумма может быть меньше 9, равна 9 и больше 9. Какие числа могут быть записаны на карточках?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 144]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .