ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В ряд стоят 33 девочки и каждая держит по ромашке. Одновременно каждая из девочек передаёт свою ромашку девочке, стоящей от неё через одну.
Может ли оказаться так, что у каждой девочки будет опять по одной ромашке?

   Решение

Задачи

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 629]      



Задача 66128

Темы:   [ Четность и нечетность ]
[ Разбиения на пары и группы; биекции ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 7,8

В ряд стоят 33 девочки и каждая держит по ромашке. Одновременно каждая из девочек передаёт свою ромашку девочке, стоящей от неё через одну.
Может ли оказаться так, что у каждой девочки будет опять по одной ромашке?

Прислать комментарий     Решение

Задача 66295

Темы:   [ Четность и нечетность ]
[ Малая теорема Ферма ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9

Пусть N – чётное число, которое не кратно 10. Найдите цифру десятков числа N20.

Прислать комментарий     Решение

Задача 76551

Темы:   [ Четность и нечетность ]
[ Треугольник Паскаля и бином Ньютона ]
[ Периодичность и непериодичность ]
Сложность: 3+
Классы: 10,11

В числовом треугольнике

каждое число равно сумме чисел, расположенных в предыдущей строке над этим числом и над его соседями справа и слева (отсутствующие числа считаются равными нулю). Докажите, что в каждой строке, начиная с третьей, найдутся чётные числа.

Прислать комментарий     Решение

Задача 78023

Темы:   [ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 8,9,10,11

Рассматриваются всевозможные десятизначные числа, записываемые при помощи двоек и единиц. Разбить их на два класса так, чтобы при сложении любых двух чисел каждого класса получалось число, в написании которого содержится не менее двух троек.

Прислать комментарий     Решение

Задача 78226

Темы:   [ Четность и нечетность ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 3+
Классы: 9,10

Имеется бесконечная шахматная доска. Обозначим через  (a, b)  поле, расположенное на пересечении горизонтали с номером a и вертикали с номером b. Фишка с поля  (a, b)  может сделать ход на любое из восьми полей:  (a ± m, b ± n),  (a ± n, b ± m),  где m, n – фиксированные числа, а "+" и "–" комбинируются произвольно. Сделав x ходов, фишка вернулась на исходное поле. Доказать, что x чётно.

Прислать комментарий     Решение

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 629]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .